如圖,AB和AC是等腰△ABC的兩腰,CD和BE是兩腰上的高,CD和BE相交于點(diǎn)F.
(1)在不增加輔助線的前提下,這個(gè)圖形中共有哪幾對(duì)全等三角形?請(qǐng)一一寫出.
(2)請(qǐng)你在(1)的結(jié)論中選擇一個(gè)說明理由.
分析:(1)根據(jù)△ABC是等腰三角形可得∠ABC=∠ACB,AB=AC,再有CD和BE是兩腰上的高,可得∠AEB=∠ADC=90°,進(jìn)而可判斷出△ABE≌△ACD;△DBC≌△ECB;△DFB≌△EFC;
(2)證明△ABE≌△ACD,根據(jù)條件可得∠AEB=∠ADC=90°,再有條件∠A=∠A,AB=AC可利用AAS判定兩個(gè)三角形全等.
解答:解:(1)△ABE≌△ACD;△DBC≌△ECB;△DFB≌△EFC;

(2)△ABE≌△ACD,
理由如下:
∵CD和BE是兩腰上的高,
∴∠AEB=∠ADC=90°,
在△ABE和△ACD中,
∠A=∠A
∠AEB=∠ADC
AC=AB

∴△ABE≌△ACD(AAS).
點(diǎn)評(píng):此題主要考查了三角形全等的判定,關(guān)鍵是掌握判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點(diǎn)F,使E精英家教網(wǎng)F=AE,連接AF、BE和CF.
(1)請(qǐng)?jiān)趫D中找出一對(duì)全等三角形,用符號(hào)“≌”表示,并加以證明;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由;
(3)若AB=6,BD=2DC,求四邊形ABEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是等邊三角形,點(diǎn)O為是AC的中點(diǎn),OB=12,動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向點(diǎn)B以每秒
3
個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.以點(diǎn)P為頂點(diǎn),作等邊△PMN,點(diǎn)M,N在直線OB上,取OB的中點(diǎn)D,以O(shè)D為邊在△AOB內(nèi)部作如圖所示的矩形ODEF,點(diǎn)E在線段AB上.
(1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與點(diǎn)O重合時(shí)t的值;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)設(shè)等邊△PMN和矩形ODE F重疊部分的面積為S,請(qǐng)求你直接寫出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并寫出對(duì)應(yīng)的自變量t的取值范圍;
(4)點(diǎn)P在運(yùn)動(dòng)過程中,是否存在點(diǎn)M,使得△EFM是等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,AB和AC是等腰△ABC的兩腰,CD和BE是兩腰上的高,CD和BE相交于點(diǎn)F.
(1)在不增加輔助線的前提下,這個(gè)圖形中共有哪幾對(duì)全等三角形?請(qǐng)一一寫出.
(2)請(qǐng)你在(1)的結(jié)論中選擇一個(gè)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB和AC是等腰△ABC的兩腰,CD和BE是兩腰上的高,CD和BE相交于點(diǎn)F.
(1)在不增加輔助線的前提下,這個(gè)圖形中共有哪幾對(duì)全等三角形?請(qǐng)一一寫出.
(2)請(qǐng)你在(1)的結(jié)論中選擇一個(gè)說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案