如圖,AB和AC是等腰△ABC的兩腰,CD和BE是兩腰上的高,CD和BE相交于點F.
(1)在不增加輔助線的前提下,這個圖形中共有哪幾對全等三角形?請一一寫出.
(2)請你在(1)的結論中選擇一個說明理由.

解:(1)△ABE≌△ACD;△DBC≌△ECB;△DFB≌△EFC;

(2)△ABE≌△ACD,
理由如下:
∵CD和BE是兩腰上的高,
∴∠AEB=∠ADC=90°,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(AAS).
分析:(1)根據(jù)△ABC是等腰三角形可得∠ABC=∠ACB,AB=AC,再有CD和BE是兩腰上的高,可得∠AEB=∠ADC=90°,進而可判斷出△ABE≌△ACD;△DBC≌△ECB;△DFB≌△EFC;
(2)證明△ABE≌△ACD,根據(jù)條件可得∠AEB=∠ADC=90°,再有條件∠A=∠A,AB=AC可利用AAS判定兩個三角形全等.
點評:此題主要考查了三角形全等的判定,關鍵是掌握判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使E精英家教網(wǎng)F=AE,連接AF、BE和CF.
(1)請在圖中找出一對全等三角形,用符號“≌”表示,并加以證明;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由;
(3)若AB=6,BD=2DC,求四邊形ABEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是等邊三角形,點O為是AC的中點,OB=12,動點P在線段AB上從點A向點B以每秒
3
個單位的速度運動,設運動時間為t秒.以點P為頂點,作等邊△PMN,點M,N在直線OB上,取OB的中點D,以OD為邊在△AOB內(nèi)部作如圖所示的矩形ODEF,點E在線段AB上.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)設等邊△PMN和矩形ODE F重疊部分的面積為S,請求你直接寫出當0≤t≤2秒時S與t的函數(shù)關系式,并寫出對應的自變量t的取值范圍;
(4)點P在運動過程中,是否存在點M,使得△EFM是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB和AC是等腰△ABC的兩腰,CD和BE是兩腰上的高,CD和BE相交于點F.
(1)在不增加輔助線的前提下,這個圖形中共有哪幾對全等三角形?請一一寫出.
(2)請你在(1)的結論中選擇一個說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB和AC是等腰△ABC的兩腰,CD和BE是兩腰上的高,CD和BE相交于點F.
(1)在不增加輔助線的前提下,這個圖形中共有哪幾對全等三角形?請一一寫出.
(2)請你在(1)的結論中選擇一個說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案