【題目】新冠疫情期間,全國人民眾志成城,同心抗疫,某商家決定將一個月獲得的利潤全部捐贈給社區(qū)用于抗疫.已知商家購進(jìn)一批產(chǎn)品,成本為10/件,擬采取線上和線下兩種方式進(jìn)行銷售.調(diào)查發(fā)現(xiàn),線下的月銷量(單位:件)與線下售價(單位:元/件,)滿足一次函數(shù)的關(guān)系,部分?jǐn)?shù)據(jù)如下表:

1)求的函數(shù)關(guān)系式;

2)若線上售價始終比線下每件便宜2元,且線上的月銷量固定為400件.試問:當(dāng)為多少時,線上和線下月利潤總和達(dá)到最大?并求出此時的最大利潤.

【答案】1;(2)當(dāng)線下售價定為19/件時,月利潤總和最大,此時最大利潤是7300元.

【解析】

1)由待定系數(shù)法求出yx的函數(shù)關(guān)系式即可;
2)設(shè)線上和線下月利潤總和為w元,則w=400x-2-10+yx-10=400x-4800+-100x+2400)(x-10=-100x-192+7300,由二次函數(shù)的性質(zhì)即可得出答案.

解:(1)因?yàn)?/span>yx滿足一次函數(shù)的關(guān)系,所以設(shè)y=kx+b.

將點(diǎn)(12,1200),(13,1100)代入函數(shù)解析式得

解得

的函數(shù)關(guān)系式為

2)設(shè)商家線上和線下的月利潤總和為元,則可得

=400x-12+-100x+2400)(x-10

=-100x2+3800x-28800

=,

因?yàn)?/span>-100<0,

所以當(dāng)x=19時,w有最大值,為7300,

所以當(dāng)線下售價定為19/件時,月利潤總和最大,此時最大利潤是7300元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在矩形ABCD中,AB4,AD3,⊙C與對角線BD相切.

1)如圖1,求⊙C的半徑;

2)如圖2,點(diǎn)P是⊙C上一個動點(diǎn),連接AP,AC,AP交⊙C于點(diǎn)Q,若sinPAC,求∠CPA的度數(shù)和弧PQ的長;

3)如圖,對角線AC與⊙C交于點(diǎn)E,點(diǎn)P是⊙C上一個動點(diǎn),設(shè)點(diǎn)P到直線AC的距離為d,當(dāng)0d時,請直接寫出∠PCE度數(shù)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,,點(diǎn)G在邊上,連接,作于點(diǎn)E,于點(diǎn)F,連接、,設(shè),

1)求證:;

2)求證:;

3)若點(diǎn)G從點(diǎn)B沿邊運(yùn)動至點(diǎn)C停止,求點(diǎn)E,F所經(jīng)過的路徑與邊圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于二次函數(shù)的三個結(jié)論:對任意實(shí)數(shù)m,都有對應(yīng)的函數(shù)值相等;3x4,對應(yīng)的y的整數(shù)值有4個,則;若拋物線與x軸交于不同兩點(diǎn)AB,且AB6,則.其中正確的結(jié)論是(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】成都“339”電視塔作為成都市地標(biāo)性建筑之一,現(xiàn)已成為外地游客到成都旅游打卡的網(wǎng)紅地.如圖,為測量電視塔觀景臺處的高度,某數(shù)學(xué)興趣小組在電視塔附近一建筑物樓頂處測得塔處的仰角為45°,塔底部處的俯角為22°.已知建筑物的高約為61米,請計算觀景臺的高的值.

(結(jié)果精確到1米;參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了科學(xué)普及新型冠狀病毒肺炎防護(hù)知識,提升學(xué)生的自我防護(hù)意識和能力,某中學(xué)開展線上“戰(zhàn)疫情復(fù)課復(fù)學(xué)”科普知識競賽活動,競賽試卷滿分100分.活動結(jié)束后,從參賽的七年級學(xué)生中隨機(jī)抽取了30名同學(xué)的成績(單位:分),收集數(shù)據(jù)如下:

9193,88,7992,8293,93,9898,89,96,78,10093,

98,95,93,96,8899,9875,8086,9290,88,96,93

并將數(shù)據(jù)整理后,繪制以下不完整的統(tǒng)計表(1)、頻數(shù)分布直方圖(2)和扇形統(tǒng)計圖(3)

請根據(jù)圖表中的信息解答下列各題:

1)填空:________________;

2)補(bǔ)全頻數(shù)分布直方圖.若成績在“85分到90分以下”為“成績良好”,請你求出扇形統(tǒng)計圖中“成績良好”部分的圓心角的度數(shù);

3)成績達(dá)到“90分及以上”為“成績優(yōu)秀”.現(xiàn)需分別從組的甲、乙和組的丙、丁四位同學(xué)中,隨機(jī)選取兩人參加全校決賽,請用畫樹狀圖或列表法求出選中的兩人恰好是在同一個小組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時直線AC下方拋物線上的動點(diǎn).

(1求拋物線的解析式;(2過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時,求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時,在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平而直角坐標(biāo)系中,已知點(diǎn),直線經(jīng)過點(diǎn).拋物線恰好經(jīng)過三點(diǎn)中的兩點(diǎn).

判斷點(diǎn)是否在直線上.并說明理由;

的值;

平移拋物線,使其頂點(diǎn)仍在直線上,求平移后所得拋物線與軸交點(diǎn)縱坐標(biāo)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)是一次函數(shù)圖像上一點(diǎn),過點(diǎn)軸的垂線上一點(diǎn)(上方),在的右側(cè)以為斜邊作等腰直角三角形,反比例函數(shù)的圖像過點(diǎn),若的面積為6,則的面積是

A.B.4C.3D.

查看答案和解析>>

同步練習(xí)冊答案