【題目】已知在矩形ABCD中,AB=4,AD=3,⊙C與對(duì)角線BD相切.
(1)如圖1,求⊙C的半徑;
(2)如圖2,點(diǎn)P是⊙C上一個(gè)動(dòng)點(diǎn),連接AP,AC,AP交⊙C于點(diǎn)Q,若sin∠PAC=,求∠CPA的度數(shù)和弧PQ的長(zhǎng);
(3)如圖,對(duì)角線AC與⊙C交于點(diǎn)E,點(diǎn)P是⊙C上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P到直線AC的距離為d,當(dāng)0<d≤時(shí),請(qǐng)直接寫出∠PCE度數(shù)的取值范圍.
【答案】(1);(2)60°,;(3)0°<∠PCE≤60°或120°≤∠PCE<180°
【解析】
(1)先利用勾股定理求出BD,再用三角形的面積公式求解即可得出結(jié)論;
(2)先根據(jù)三角函數(shù)求出CM和∠CPM,進(jìn)而求出∠PCQ,最后用弧長(zhǎng)公式計(jì)算即可得出結(jié)論;
(3)先判斷出0<CN≤,再利用三角函數(shù)求出分界點(diǎn)CN=時(shí)的∠PCE的度數(shù),即可得出結(jié)論.
(1)如圖1,在矩形ABCD中,CD=AB=4,BC=AD=3,∠BCD=90°,
設(shè)切點(diǎn)為H.連接CH,
∵ BD與⊙C相切于H,
∴ CH⊥BD,
根據(jù)勾股定理得,BD=,
∵ S△BCD=BCCD=BDCH,
∴ CH=,
即⊙C的半徑為;
(2)如圖2,連接CP,CQ,過(guò)點(diǎn)C作CM⊥AP于M,
∵ 四邊形ABCD是矩形,
∴ AC=BD=5,
在Rt△ACM中,sin∠PAC=,
∴ CM=,
在Rt△CMP中,sin∠CPM=,
∴∠CPM=60°,
即∠CPA=60°,
∵ CP=CQ,
∴ △CPQ是等邊三角形,
∴ ∠ PCQ=60°,
∴ 弧PQ的長(zhǎng)為;
(3)如圖備用圖,過(guò)點(diǎn)P作PP'∥AC,過(guò)點(diǎn)C作CN⊥PP'于N,
則∠PCN=∠P'CN,∠ECN=∠CNP=90°,
∴ 點(diǎn)P到AC的距離d=CN,
∵ 0<d≤,
∴ 0<CN≤,
當(dāng)CN=0時(shí),點(diǎn)P在直線AC上,∠PCE=0°,
當(dāng)CN=時(shí),連接CP,CP',
在Rt△P'CN中,cos∠P'CN===,
∴ ∠P'CN=30°,
∴ ∠PCN=∠P'CN=30°
∴ ∠P'CE=∠ECN﹣∠P'CN=60°,∠PCE=∠ECN+∠PCN=120°,
∴ ∠PCE度數(shù)的取值范圍為0°<∠PCE≤60°或120°≤∠PCE<180°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究一種新藥的療效,選100名患者隨機(jī)分成兩組,每組各50名,一組服藥,另一組不服藥,12周后,記錄了兩組患者的生理指標(biāo)和的數(shù)據(jù),并制成下圖,其中“*”表示服藥者,“+”表示未服藥者;
同時(shí)記錄了服藥患者在4周、8周、12周后的指標(biāo)z的改善情況,并繪制成條形統(tǒng)計(jì)圖.
根據(jù)以上信息,回答下列問(wèn)題:
(1)從服藥的50名患者中隨機(jī)選出一人,求此人指標(biāo)的值大于1.7的概率;
(2)設(shè)這100名患者中服藥者指標(biāo)數(shù)據(jù)的方差為,未服藥者指標(biāo)數(shù)據(jù)的方差為,則 ;(填“>”、“=”或“<” )
(3)對(duì)于指標(biāo)z的改善情況,下列推斷合理的是 .
①服藥4周后,超過(guò)一半的患者指標(biāo)z沒有改善,說(shuō)明此藥對(duì)指標(biāo)z沒有太大作用;
②在服藥的12周內(nèi),隨著服藥時(shí)間的增長(zhǎng),對(duì)指標(biāo)z的改善效果越來(lái)越明顯.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E為正方形ABCD的邊BC上一動(dòng)點(diǎn),以AE為一邊作正方形AEFG,對(duì)角線AF交邊CD于H,連EH.①BE+DH=EH;②若E為BC的中點(diǎn),則H為CD的中點(diǎn);③EF平分∠HEC;④.其中正確的序號(hào)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是一個(gè)銳角,以點(diǎn)為圓心,任意長(zhǎng)為半徑畫弧,分別交、于點(diǎn)、,再分別以點(diǎn)、為圓心,大于長(zhǎng)為半徑畫弧,兩弧交于點(diǎn),畫射線.過(guò)點(diǎn)作,交射線于點(diǎn),過(guò)點(diǎn)作,交于點(diǎn).設(shè),,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB⊥AD于點(diǎn)A,CD⊥AD于點(diǎn)D,∠C=120°.若線段BC與CD的和為12,則四邊形ABCD的面積可能是( 。
A.24B.30C.45D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)組織有獎(jiǎng)知識(shí)競(jìng)賽,派小明去購(gòu)買A、B兩種品牌的鋼筆作為獎(jiǎng)品.已知一支A品牌鋼筆的價(jià)格比一支B品牌鋼筆的價(jià)格多5元,且買100元A品牌鋼筆與買50元B品牌鋼筆數(shù)目相同.
(1)求A、B兩種品牌鋼筆的單價(jià)分別為多少元?
(2)根據(jù)活動(dòng)的設(shè)獎(jiǎng)情況,決定購(gòu)買A、B兩種品牌的鋼筆共100支,如果設(shè)購(gòu)買A品牌鋼筆的數(shù)量為n支,購(gòu)買這兩種品牌的鋼筆共花費(fèi)y元.
①直接寫出y(元)關(guān)于n(支)的函數(shù)關(guān)系式;
②如果所購(gòu)買A品牌鋼筆的數(shù)量不少于B品牌鋼筆數(shù)量的,請(qǐng)你幫助小明計(jì)算如何購(gòu)買,才能使所花費(fèi)的錢最少?此時(shí)花費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖①,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上,請(qǐng)直接寫出線段BE與線段CD的數(shù)量關(guān)系: ;
(2)操作探究
如圖②,將圖①中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°α360°),請(qǐng)判斷并證明線段BE與線段CD的數(shù)量關(guān)系;
(3)解決問(wèn)題
將圖①中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°α360°),若DE=2AC,在旋轉(zhuǎn)的過(guò)程中,當(dāng)以A、B、C、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出旋轉(zhuǎn)角α的度數(shù) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A(-2,0),B(4,0)兩點(diǎn),且函數(shù)的最大值為9.
(1)求二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)圖象的頂點(diǎn)為C,與y軸交點(diǎn)為D,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“新冠”疫情期間,全國(guó)人民“眾志成城,同心抗疫”,某商家決定將一個(gè)月獲得的利潤(rùn)全部捐贈(zèng)給社區(qū)用于抗疫.已知商家購(gòu)進(jìn)一批產(chǎn)品,成本為10元/件,擬采取線上和線下兩種方式進(jìn)行銷售.調(diào)查發(fā)現(xiàn),線下的月銷量(單位:件)與線下售價(jià)(單位:元/件,)滿足一次函數(shù)的關(guān)系,部分?jǐn)?shù)據(jù)如下表:
(1)求與的函數(shù)關(guān)系式;
(2)若線上售價(jià)始終比線下每件便宜2元,且線上的月銷量固定為400件.試問(wèn):當(dāng)為多少時(shí),線上和線下月利潤(rùn)總和達(dá)到最大?并求出此時(shí)的最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com