【題目】如圖1,在正方形ABCD中,點E,F分別是AC,BC上的點,且滿足DE⊥EF,垂足為點E,連接DF.
(1)求∠EDF= (填度數);
(2)延長DE交AB于點G,連接FG,如圖2,猜想AG,GF,FC三者的數量關系,并給出證明;
(3)①若AB=6,G是AB的中點,求△BFG的面積;
②設AG=a,CF=b,△BFG的面積記為S,試確定S與a,b的關系,并說明理由.
【答案】(1)45°;(2)GF=AG+CF,證明見解析;(3)①6; ②,理由見解析.
【解析】
(1)如圖1中,連接BE.利用全等三角形的性質證明EB=ED,再利用等角對等邊證明EB=EF即可解決問題.
(2)猜想:GF=AG+CF.如圖2中,將△CDF繞點D旋轉90°,得△ADH,證明△GDH≌△GDF(SAS)即可解決問題.
(3)①設CF=x,則AH=x,BF=6-x,GF=3+x,利用勾股定理構建方程求出x即可.
②設正方形邊長為x,利用勾股定理構建關系式,利用整體代入的思想解決問題即可.
解:(1)如圖1中,連接BE.
∵四邊形ABCD是正方形,
∴CD=CB,∠ECD=∠ECB=45°,
∵EC=EC,
∴△ECB≌△ECD(SAS),
∴EB=ED,∠EBC=∠EDC,
∵∠DEF=∠DCF=90°,
∴∠EFC+∠EDC=180°,
∵∠EFB+∠EFC=180°,
∴∠EFB=∠EDC,
∴∠EBF=∠EFB,
∴EB=EF,
∴DE=EF,
∵∠DEF=90°,
∴∠EDF=45°
故答案為45°.
(2)猜想:GF=AG+CF.
如圖2中,將△CDF繞點D旋轉90°,得△ADH,
∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,
∵∠DAC=90°,
∴∠DAC+∠DAH=180°,
∴H、A、G三點共線,
∴GH=AG+AH=AG+CF,
∵∠EDF=45°,
∴∠CDF+∠ADG=45°,
∴∠ADH+∠ADG=45°
∴∠GDH=∠EDF=45°
又∵DG=DG
∴△GDH≌△GDF(SAS)
∴GH=GF,
∴GF=AG+CF.
(3)①設CF=x,則AH=x,BF=6-x,GF=3+x,
則有(3+x)2=(6-x)2+32,
解得x=2
∴S△BFG=BFBG=6.
②設正方形邊長為x,
∵AG=a,CF=b,
∴BF=x-b,BG=x-a,GF=a+b,
則有(x-a)2+(x-b)2=(a+b)2,
化簡得到:x2-ax-bx=ab,
∴S=(x-a)(x-b)=(x2-ax-bx+ab)=×2ab=ab.
科目:初中數學 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,各地采取價格調控手段達到節(jié)約用水的目的,某市規(guī)定如下用水收費標準:每戶每月的用水量不超過立方米時,水費按每立方米元收費,超過立方米時,不超過的部分每立方米仍按元收費,超過的部分每立方米按元收費,該市某戶今年月份的用水量和所交水費如下表所示:
月份 | 用水量() | 收費(元) |
設某戶每月用水量(立方米),應交水費(元)
求的值,當時,分別寫出與的函數關系式.
若該戶月份用水量為立方米,求該月份水費多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點M為直線AB上一動點,△PAB,△PMN都是等邊三角形,連接BN,
(1)求證:AM=BN;
(2)寫出點M在如圖2所示位置時,線段AB、BM、BN三者之間的數量關系,并給出證明;
(3)點M在圖3所示位置時,直接寫出線段AB、BM、BN三者之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠為了解甲、乙兩個部門員工的生產技能情況,從甲、乙兩個部門各隨機抽取20名員工,進行生產技能測試,測試成績(百分制)如下:
甲7886 748175768770759075798170748086698377
乙9373 888172819483778380817081737882807040
(說明:成績80分及以上為優(yōu)秀,70-79分為良好,60-69分為合格,60分以下為不合格)
(1)請?zhí)钔暾砀瘢?/span>
部門 | 平均數 | 中位數 | 眾數 |
甲 | 78.3 | 75 | |
乙 | 78 | 80.5 |
(2)從樣本數據可以推斷出 部門員工的生產技能水平較高,請說明理由.(至少從兩個不同的角度說明推斷的合理性).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算:
(1)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12)
(2)7+(﹣6.5)+3+(﹣1.25)+2
(3)(﹣81)÷(﹣2)×÷(﹣8)
(4)
(5)
(6)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,C城市在A城市正東方向,現計劃在A,C兩城市間修建一條高速鐵路(即線段AC),經測量,森林保護區(qū)的中心P在城市A的北偏東60°方向上,在線段AC上距A城市120 km的B處測得P在北偏東30°方向上,已知森林保護區(qū)是以點P為圓心,100 km為半徑的圓形區(qū)域,請問計劃修建的這條高速鐵路是否穿越保護區(qū),為什么?(參考數據:)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于0.000 002 5 m的顆粒物,將0.000 002 5用科學記數法表示為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)探究:哪些特殊的角可以用一副三角板畫出?
在①,②,③,④中,小明同學利用一副三角板畫不出來的特殊角是_________;(填序號)
(2)在探究過程中,愛動腦筋的小明想起了圖形的運動方式有多種.如圖,他先用三角板畫出了直線,然后將一副三角板拼接在一起,其中角()的頂點與角()的頂點互相重合,且邊、都在直線上.固定三角板不動,將三角板繞點按順時針方向旋轉一個角度,當邊與射線第一次重合時停止.
①當平分時,求旋轉角度;
②是否存在?若存在,求旋轉角度;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com