【題目】關(guān)于x的方程(k-1)x2+2kx+2=0

(1)求證:無(wú)論k為何值,方程總有實(shí)數(shù)根。

(2設(shè)x1,x2是方程(k-1)x2+2kx+2=0的兩個(gè)根,記S=++ x1+x2,S的值能為2嗎?若能,求出此時(shí)k的值。若不能,請(qǐng)說(shuō)明理由。

【答案】(1)詳見(jiàn)解析;(2)S的值能為2,此時(shí)k的值為2.

【解析】

試題分析:(1) 本題二次項(xiàng)系數(shù)為(k-1),可能為0,可能不為0,故要分情況討論;要保證一元二次方程總有實(shí)數(shù)根,就必須使>0恒成立;(2)欲求k的值,先把此代數(shù)式變形為兩根之積或兩根之和的形式,代入數(shù)值計(jì)算即可.

試題解析:⑴①當(dāng)k-1=0即k=1時(shí),方程為一元一次方程2x=1,

x=有一個(gè)解;

當(dāng)k-10即k1時(shí),方程為一元二次方程,

=(2k)-4×2(k-1)=4k-8k+8=4(k-1) +4>0

方程有兩不等根

綜合①②得不論k為何值,方程總有實(shí)根

⑵∵x +x ,x x =

S=++ x1+x2

=

=

=

=

=2k-2=2,

解得k=2,

當(dāng)k=2時(shí),S的值為2

S的值能為2,此時(shí)k的值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)六邊形的各條邊都相等,當(dāng)邊長(zhǎng)為3 cm時(shí),它的周長(zhǎng)為__________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知線段AB的兩個(gè)端點(diǎn)分別是A(﹣4,﹣1),B(1,1),將線段AB平移后得到線段A′B′,若點(diǎn)A′的坐標(biāo)為(﹣2,2),則點(diǎn)B′的坐標(biāo)為(
A.(4,3)
B.(3,4)
C.(﹣1,﹣2)
D.(﹣2,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是(
A.a2a3=a6
B.(a23=a5
C.(﹣2a2b)3=﹣8a6b3
D.(2a+1)2=4a2+2a+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的位置如圖(每個(gè)小正方形的邊長(zhǎng)均為1).
(1)請(qǐng)畫(huà)出△ABC沿x軸向右平移3個(gè)單位長(zhǎng)度,再沿y軸向上平移2個(gè)單位長(zhǎng)度后的△A′B′C′(其中A′、B′、C′分別是A、B、C的對(duì)應(yīng)點(diǎn),不寫(xiě)畫(huà)法).
(2)直接寫(xiě)出A′、B′、C′三點(diǎn)的坐標(biāo):
A′(); B′();
C′( ).
(3)求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在6×4的正方形網(wǎng)格中,點(diǎn)A、B、C、D、E、F都在格點(diǎn)上.連接點(diǎn)A、B得線段AB.
(1)連接C、D、E、F中的任意兩點(diǎn),共可得 條線段,在圖中畫(huà)出來(lái);
(2)在(1)中所連得的線段中,與AB平行的線段是 ;
(3)用三角尺或量角器度量、檢驗(yàn),AB及(1)中所連得的線段中,互相垂直的線段有幾對(duì)?(請(qǐng)用“⊥”表示出來(lái))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程(x﹣3)(x﹣2)﹣p2=0.

(1)求證:無(wú)論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)方程兩實(shí)數(shù)根分別為x1,x2,且滿足,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:2a3﹣8a2+8a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】xn=5,yn=3,則(xy2n的值為( )

A. 15 B. 45 C. 75 D. 225

查看答案和解析>>

同步練習(xí)冊(cè)答案