【題目】如圖,△ABC中,ABAC,

(1)請(qǐng)你利用直尺和圓規(guī)完成如下操作:

①作△ABC的角平分線AD;

②作邊AB的垂直平分線EF,EFAD相交于點(diǎn)P;

③連接PB,PC

請(qǐng)你觀察圖形解答下列問(wèn)題:

2)線段PAPB,PC之間的數(shù)量關(guān)系是   ;請(qǐng)說(shuō)明理由.

3)若∠ABC70°,求∠BPC的度數(shù).

【答案】1)見(jiàn)解析;(2PA=PB=PC,理由見(jiàn)解析;(380°

【解析】

1)利用基本作圖作角平分線ADAB的垂直平分線,它們相交于P點(diǎn);

2)根據(jù)線段的垂直平分線的性質(zhì)可得:PA=PB=PC;
3)根據(jù)等腰三角形的性質(zhì)得:∠ABC=ACB=70°,由三角形的內(nèi)角和得:∠BAC=180°-2×70°=40°,由角平分線定義得:∠BAD=CAD=20°,最后利用三角形外角的性質(zhì)可得結(jié)論.

解:(1)如圖,AD、EF 、點(diǎn)P為所作;

2PA=PB=PC,理由:
AB=AC,AD平分∠BAC,
ADBC的垂直平分線,
PB=PC,
EPAB的垂直平分線,
PA=PB
PA=PB=PC;
故答案為:PA=PB=PC;
3)∵AB=AC,
∴∠ABC=ACB=70°
∴∠BAC=180°-2×70°=40°,
AM平分∠BAC
∴∠BAD=CAD=20°,
PA=PB=PC
∴∠ABP=BAP=ACP=20°,
∴∠BPC=ABP+BAC+ACP=20°+40°+20°=80°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分線,則∠BOC的度數(shù)為( 。

A.105°B.115°C.125°D.135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件

B.甲、乙兩人在相同條件下各射擊10次,他們的成績(jī)平均數(shù)相同,方差分別是,,則甲的射擊成績(jī)較穩(wěn)定

C.明天降雨的概率為,表示明天有半天都在降雨

D.了解一批電視機(jī)的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一張三角形紙片ABC,其中BAC=60°,BC=6,點(diǎn)D是BC邊上一動(dòng)點(diǎn),將BD,CD翻折使得B′,C′分別落在AB,AC邊上,(B與B′,C與C′分別對(duì)應(yīng)),點(diǎn)D從點(diǎn)B運(yùn)動(dòng)至點(diǎn)C,△B′C′D面積的大小變化情況是(  )

A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,AECF,且分別交對(duì)角線BD于點(diǎn)E,F

(1)求證:AEB≌△CFD

(2)連接AF,CE,若∠AFE=CFE,求證:四邊形AFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB=CD.

(1)如圖(1),求證:AD∥BC;

(2)如圖(2),點(diǎn)F是AC的中點(diǎn),弦DG∥AB,交BC于點(diǎn)E,交AC于點(diǎn)M,求證:AE=2DF;

(3)在(2)的條件下,若DG平分∠ADC,GE=5,tan∠ADF=4,求⊙O的半徑。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D在雙曲線上,AD垂直x軸,垂足為A,點(diǎn)CAD上,CB平行于x軸交雙曲線于點(diǎn)B,直線ABy軸交于點(diǎn)F,已知AC:AD=1:3,點(diǎn)C的坐標(biāo)為(3,2).

(1)求該雙曲線的解析式;

(2)求△OFA的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過(guò)B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過(guò)B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的對(duì)角線BOx 軸上,若正方形ABCO的邊長(zhǎng)為,點(diǎn)Bx負(fù)半軸上,反比例函數(shù)的圖象經(jīng)過(guò)C點(diǎn).

1)求該反比例函數(shù)的解析式;

2)當(dāng)函數(shù)值-2時(shí),請(qǐng)直接寫(xiě)出自變量x的取值范圍;

3)若點(diǎn)P是反比例函數(shù)上的一點(diǎn),且PBO的面積恰好等于正方形ABCO的面積,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案