【題目】如圖,已知點A8,0),O為坐標(biāo)原點,P是線段OA上任意一點(不含端點OA),過PO兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為BC,射線OBAC相交于點D.當(dāng)OD=AD=5時,這兩個二次函數(shù)的最大值之和等于_______

【答案】3

【解析】

BBFOAF,過DDEOAE,過CCMOAM,則BF+CM是這兩個二次函數(shù)的最大值之和,BFDECM,求出AE=OE=6,DE=3.設(shè)P2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出,,代入求出BFCM,相加即可求出答案.

BBFOAF,過DDEOAE,過CCMOAM,

BFOA,DEOA,CMOA

BFDECM,

OD=AD=5DEOA,

OE=EA=OA=4,

由勾股定理得:DE==3

設(shè)P2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,

BFDECM

∴△OBF∽△ODE,△ACM∽△ADE,

,

AM=PM=OA-OP=8-2x=4-x,

,,

解得:BF=x,CM=3-x

BF+CM=3

故答案為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點的坐標(biāo)為,動點從點出發(fā),沿軸以每秒個單位的速度向上移動,且過點的直線也隨之移動,如果點關(guān)于的對稱點落在坐標(biāo)軸上,沒點的移動時間為,那么的值可以是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知:正方形OCAB,A22),Q5,7),ABy軸,ACx軸,OA,BC交于點P,若正方形OCABO為位似中心在第一象限內(nèi)放大,點P隨正方形一起運動,當(dāng)PQ達到最小值時停止運動.以PQ的長為邊長,向PQ的右側(cè)作等邊PQD,求在這個位似變化過程中,D點運動的路徑長(  )

A. 5B. 6C. 2D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,則點D到BC的距離是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線EF與⊙O相切于點C,點A為⊙O上異于點C的一動點,⊙O的半徑為4,ABEF于點B,設(shè)ACF=α(0°<α<180°).

1)若α=,求證:四邊形OCBA為正方形;

2)若AC―AB=1,求AC的長;

3)當(dāng)AC―AB取最大值時,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量。平面向量可以用有向線段表示,有向線段的長度表示向量的大小,有向線段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。如以正方形的四個頂點中某一點為起點,另一個頂點為終點作向量,可以作出8個不同的向量:、、、、、(由于是相等向量,因此只算一個)

⑴作兩個相鄰的正方形(如圖一)。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值;

⑵作個相鄰的正方形(如圖二)“一字型”排開。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值;

⑶作個相鄰的正方形(如圖三)排開。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值;

⑷作個相鄰的正方形(如圖四)排開。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在∠MON的邊ON上,ABOMB,AE=OB,DEONEAD=AO,DCOMC

1)求證:四邊形ABCD是矩形;

2)若DE=3,OE=9,求AB、AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD交于點OCE平分∠BCDAB于點E,交BD于點F,且∠ABC60°,AB2BC,連接OE.下列結(jié)論:ACD30°;SABCDACBCOEAC6;SOEFSABCD,成立的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形的邊長和一條對角線的長均為2 cm,則菱形的面積為( )

A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2

查看答案和解析>>

同步練習(xí)冊答案