【題目】定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量。平面向量可以用有向線段表示,有向線段的長度表示向量的大小,有向線段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。如以正方形的四個頂點中某一點為起點,另一個頂點為終點作向量,可以作出8個不同的向量:、、、、、、、(由于和是相等向量,因此只算一個)
⑴作兩個相鄰的正方形(如圖一)。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值;
⑵作個相鄰的正方形(如圖二)“一字型”排開。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值;
⑶作個相鄰的正方形(如圖三)排開。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值;
⑷作個相鄰的正方形(如圖四)排開。以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)記為,試求的值。
【答案】⑴ ;⑵ ;⑶;⑷.
【解析】
(1)根據(jù)圖形,即可求得f(2)的值;
(2)首先求f(1),f(2),f(3),f(4),所以得到規(guī)律為:f(n)=6n+2;
(3)根據(jù)圖形,即可求得f(2×3)的值;
(4)先分析特殊情況,再求得規(guī)律:f(m×n)=2(m+n)+4mn.
(1)作兩個相鄰的正方形,以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同向量的個數(shù)f(2)=14;
(2)分別求出作兩個、三個、四個相鄰的正方形(如圖1).以其中的一個頂點為起點,另一個頂點為終點作向量,可以作出不同的向量個數(shù),找出規(guī)律,
∵f(1)=6×1+2=8,f(2)=6×2+2=14,f(3)=6×3+2=20,f(4)=6×4+2=26,
∴f(n)=6n+2;
(3)f(2×3)=34;
(4)∵f(2×2)=24,f(2×3)=34,f(2×4)=44,f(3×2)=34,f(3×3)=48,f(3×4)=62
∴f(m×n)=2(m+n)+4mn.
科目:初中數(shù)學 來源: 題型:
【題目】如圖已知:是圓的直徑,,點為圓上異于點、的一點,點為弦的中點.
(1)如果交于點,求:的值;
(2)如果于點,求的正弦值;
(3)如果,為上一動點,過作,交于點,與射線交于圓內(nèi)點,請完成下列探究.
探究一:設,,求關(guān)于的函數(shù)解析式及其定義域.
探究二:如果點在以為圓心,為半徑的圓上,寫出此時的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙P的圓心是(3,a)(a>3),⊙P與y軸相切,函數(shù)y=x的圖象被⊙P截得的弦AB的長為2,則a的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人周末從同一地點出發(fā)去某景點,因乙臨時有事,甲先出發(fā),甲出發(fā)0.2小時后乙開汽車前往,設甲行駛的時間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km),如圖是y1與y2關(guān)于x的函數(shù)圖像.
(1)求x為何值時,兩人相遇?
(2)求x為何值時,兩人相距5km?(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(8,0),O為坐標原點,P是線段OA上任意一點(不含端點O、A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當OD=AD=5時,這兩個二次函數(shù)的最大值之和等于_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學家的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖這個三角形的構(gòu)造法其兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.利用 規(guī)律計算:25-5×24+10×23-10×22+5×2-1的值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩位射擊運動員參加射擊訓練,各射擊20次,成績?nèi)缦卤硭荆?/span>
設甲、乙兩位運動員射擊成績的方差分別為S 2甲和S 2乙,則下列說法正確的是
A. S 2甲<S 2乙B. S 2甲=S 2乙
C. S 2甲>S 2乙D. 無法比較S 2甲和S 2乙的大小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 A,B,C,D 依次在同一條直線上,點 E,F 分別在直線 AD 的兩側(cè),已知 BE//CF,∠A=∠D,AE=DF.
(1)求證:四邊形 BFCE 是平行四邊形.
(2)若 AD=10,EC=3,∠EBD=60°,當四邊形 BFCE是菱形時,求 AB 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加強中小學生安全教育,某校九(1)班組織了“防溺水”知識競賽,班委會決定購買鋼筆和圓珠筆對表現(xiàn)優(yōu)異的同學進行獎勵,同學們前往商店采購,商店里的阿姨說:“購買3支鋼筆和2支圓珠筆共需8元,并且3支鋼筆比2支圓珠筆多花4元”
(1)求鋼筆和圓珠筆每支各需多少元?
(2)班委會決定購買鋼筆和圓珠筆共30支,且支出不超過50元,則最多能夠購買多少支鋼筆?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com