【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心是(3,a)(a>3),⊙P與y軸相切,函數(shù)y=x的圖象被⊙P截得的弦AB的長為2,則a的值是_____.
【答案】2+3.
【解析】
作PH⊥y軸于H,PC⊥AB于C,作PE⊥x軸于E交AB于D,如圖,先根據(jù)切線的性質(zhì)得PH=2,即⊙P的半徑為2,再根據(jù)垂徑定理,由PC⊥AB得到,接著在Rt△BPC中利用勾股定理可計算出PC=1,由直線y=x為第一、三象限的角平分線得到∠DOE=45°,則∠ODE=45°,DE=OE=2,然后判斷△PCD為等腰直角三角形得到所以即
解:作PH⊥y軸于H,PC⊥AB于C,作PE⊥x軸于E交AB于D,如圖,
∵⊙P與y軸相切,
∴PH=2,即⊙P的半徑為2,
∵PC⊥AB,
∴
在Rt△BPC中,
∵直線y=x為第一、三象限的角平分線,
∴∠DOE=45°,
∴∠ODE=45°,DE=OE=3,
∴∠PDC=45°,
∴
∴
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)初三年級積極推進(jìn)走班制教學(xué)。為了了解一段時間以來,“至善班”的學(xué)習(xí)效果,年級組織了多次定時測試,現(xiàn)隨機(jī)選取甲、乙兩個“至善班”,從中各抽取名同學(xué)在某一次定時測試中的數(shù)學(xué)成績,其結(jié)果記錄如下:
收集數(shù)據(jù):
“至善班”甲班的名同學(xué)的數(shù)學(xué)成績統(tǒng)計(滿分為分) (單位:分)
“至善班”甲=乙班的名同學(xué)的數(shù)學(xué)成績統(tǒng)計(滿分為分) (單位:分)
整理數(shù)據(jù):(成績得分用表示)
分析數(shù)據(jù),并回答下列問題:
完成下表:
在“至善班”甲班的扇形圖中,成績在的扇形中,說對的圓心角的度數(shù)為 .估計全部“至善班”的人中優(yōu)秀人數(shù)為 人.(分及以上為優(yōu)秀).
根據(jù)以上數(shù)據(jù),你認(rèn)為“至善班” 班(填“甲”或“乙”)所選取做樣本的同學(xué)的學(xué)習(xí)效果更好一些,你所做判斷的理由是:
① .
② .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,5),直線x=-5與x軸交于點(diǎn)D,直線y=-x-與x軸及直線x=-5分別交于點(diǎn)C,E.點(diǎn)B,E關(guān)于x軸對稱,連接AB.
(1)求點(diǎn)C,E的坐標(biāo)及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn)S△AOC≠S,請通過計算解釋他的想法錯在哪里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形ABCD繞點(diǎn)B順時針旋轉(zhuǎn)得到矩形A1BC1D1,點(diǎn)A、C、D的對應(yīng)點(diǎn)分別為A1、C1、D1
(1)當(dāng)點(diǎn)A1落在AC上時
①如圖1,若∠CAB=60°,求證:四邊形ABD1C為平行四邊形;
②如圖2,AD1交CB于點(diǎn)O.若∠CAB≠60°,求證:DO=AO;
(2)如圖3,當(dāng)A1D1過點(diǎn)C時.若BC=5,CD=3,直接寫出A1A的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知:正方形OCAB,A(2,2),Q(5,7),AB⊥y軸,AC⊥x軸,OA,BC交于點(diǎn)P,若正方形OCAB以O為位似中心在第一象限內(nèi)放大,點(diǎn)P隨正方形一起運(yùn)動,當(dāng)PQ達(dá)到最小值時停止運(yùn)動.以PQ的長為邊長,向PQ的右側(cè)作等邊△PQD,求在這個位似變化過程中,D點(diǎn)運(yùn)動的路徑長( 。
A. 5B. 6C. 2D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖中折線OA-AB-BC-CD所示.
(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;
(2)求乙的步行速度;
(3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,則點(diǎn)D到BC的距離是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面內(nèi),我們把既有大小又有方向的量叫做平面向量。平面向量可以用有向線段表示,有向線段的長度表示向量的大小,有向線段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。如以正方形的四個頂點(diǎn)中某一點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出8個不同的向量:、、、、、、、(由于和是相等向量,因此只算一個)
⑴作兩個相鄰的正方形(如圖一)。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個數(shù)記為,試求的值;
⑵作個相鄰的正方形(如圖二)“一字型”排開。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個數(shù)記為,試求的值;
⑶作個相鄰的正方形(如圖三)排開。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個數(shù)記為,試求的值;
⑷作個相鄰的正方形(如圖四)排開。以其中的一個頂點(diǎn)為起點(diǎn),另一個頂點(diǎn)為終點(diǎn)作向量,可以作出不同向量的個數(shù)記為,試求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠BAC=90°,AB=AC=6.D為BC邊一點(diǎn),且BD∶DC=1∶2,以D為一個頂點(diǎn)作正方形DEFG,且DE=BC,連接AE,將正方形DEFG繞點(diǎn)D旋轉(zhuǎn)一周,在整個旋轉(zhuǎn)過程中,當(dāng)AE取得最大值時AG的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com