【題目】如圖,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,動(dòng)點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.
(1)求證:在運(yùn)動(dòng)過(guò)程中,不管t取何值,都有SAED=2SDGC
(2)當(dāng)t取何值時(shí),△DFE與△DMG全等.

【答案】
(1)證明:∵∠BAD=∠DAC,DF⊥AB,DM⊥AC,

∴DF=DM,

∵SAED= AEDF,SDGC= CGDM,

= ,

∵點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),

=2,

=2,

∴在運(yùn)動(dòng)過(guò)程中,不管取何值,都有SAED=2SDGC


(2)解:設(shè)時(shí)間為t時(shí),△DFE與△DMG全等,則EF=MG,

①當(dāng)M在線段CG的延長(zhǎng)線上時(shí),

∵點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),

∴EF=AF﹣AE=10﹣2t,MG=AC﹣CG﹣AM=4﹣t,

即10﹣2t=4﹣t,

解得:t=6,

當(dāng)t=6時(shí),MG=﹣2,所以舍去;

②當(dāng)M在線段CG上時(shí),

∵點(diǎn)E以2cm/s的速度從A點(diǎn)向F點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)G以1cm/s的速度從C點(diǎn)向A點(diǎn)運(yùn)動(dòng),

∴EF=AF﹣AE=10﹣2t,MG=AM﹣(AC﹣CG)=t﹣4,

即10﹣2t=t﹣4,

解得:t= ,

綜上所述當(dāng)t= 時(shí),△DFE與△DMG全等


【解析】(1)由角平分線的性質(zhì)可知DF=DM,所以△AED和△DEG的面積轉(zhuǎn)化為底AE和CG的比值,根據(jù)路程=速度×?xí)r間求出AE和CG的長(zhǎng)度即可證明在運(yùn)動(dòng)過(guò)程中,不管取何值,都有SAED=2SDGC . (2)若△DFE與△DMG全等,則EF=MG,利用已知條件求出EF和MG的長(zhǎng)度,建立方程解方程即可求出運(yùn)動(dòng)的時(shí)間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,D是BC邊上一點(diǎn),以DB為直徑的⊙O經(jīng)過(guò)AB的中點(diǎn)E,交AD的延長(zhǎng)線于點(diǎn)F,連結(jié)EF.

(1)求證:∠1=∠F

(2)若sinB=,EF=,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測(cè)得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長(zhǎng)BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( )(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)

A.30.6 B.32.1 C.37.9 D.39.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解一元二次方程x2﹣6x﹣8=0,下列變形正確的是(  )

A. (x﹣6)2=﹣8+36 B. (x﹣6)2=8+36 C. (x﹣3)2=8+9 D. (x﹣3)2=﹣8+9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面圖形上的任意兩點(diǎn)P,Q,如果經(jīng)過(guò)某種變換(如:平移、旋轉(zhuǎn)、軸對(duì)稱等)得到新圖形上的對(duì)應(yīng)點(diǎn)P′,Q′,保持P P′= Q Q′,我們把這種對(duì)應(yīng)點(diǎn)連線相等的變換稱為“同步變換”。對(duì)于三種變換: ①平移、②旋轉(zhuǎn)、③軸對(duì)稱,其中一定是“同步變換”的有(填序號(hào))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,ABC,點(diǎn)E在邊AB上,AED60°,則一定有

AADE20° B.ADE30°

C.ADEADC D.ADEADC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=,AD=10,點(diǎn)E是CD中點(diǎn),將這張紙片依次折疊兩次;第一次折疊紙片使點(diǎn)A與點(diǎn)E重合,如圖2,折痕為MN,連接ME/NE;第二次折疊紙片使點(diǎn)N與點(diǎn)E重合,如圖3,點(diǎn)B落到B′處,折痕為HG,連接HE,則tanEHG=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是(
A.三點(diǎn)確定一個(gè)圓
B.平分弦的直徑垂直于弦
C.等圓中相等的圓心角所對(duì)的弧相等
D.圓周角的度數(shù)等于圓心角度數(shù)的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長(zhǎng)交OC于E.

(1)求點(diǎn)B的坐標(biāo);

(2)求證:四邊形ABCE是平行四邊形;

(3)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案