【題目】如圖1,將長為10的線段OA繞點O旋轉(zhuǎn)90°得到OB,點A的運動軌跡為,P是半徑OB上一動點,Q上的一動點,連接PQ.

發(fā)現(xiàn):∠POQ=________時,PQ有最大值,最大值為________;

思考:(1)如圖2,若POB中點,且QPOB于點P,求的長;

(2)如圖3,將扇形AOB沿折痕AP折疊,使點B的對應(yīng)點B′恰好落在OA的延長線上,求陰影部分面積;

探究:如圖4,將扇形OAB沿PQ折疊,使折疊后的弧QB′恰好與半徑OA相切,切點為C,若OP=6,求點O到折痕PQ的距離.

【答案】發(fā)現(xiàn): 90°10; 思考:(1;(225π100+100;(3)O到折痕PQ的距離為.

【解析】發(fā)現(xiàn):先判斷出當PQ取最大時,點Q與點A重合,點P與點B重合,即可得出結(jié)論;

思考:(1)先判斷出∠POQ=60°,最后用弧長用弧長公式即可得出結(jié)論;

(2)先在RtB'OP中,OP2+(1010)2=(10-OP)2,解得OP=1010,最后用面積的和差即可得出結(jié)論.

探究:先找點O關(guān)于PQ的對稱點O′,連接OO′、O′B、O′C、O′P,證明四邊形OCO′B是矩形,由勾股定理求O′B,從而求出OO′的長,則OM=OO′=

發(fā)現(xiàn):∵P是半徑OB上一動點,Q上的一動點,

∴當PQ取最大時,點Q與點A重合,點P與點B重合,

此時,∠POQ=90°,PQ==10;

思考:(1)如圖,連接OQ,

∵點POB的中點,

OP=OB=OQ.

QPOB,

∴∠OPQ=90°

RtOPQ中,cosQOP=,

∴∠QOP=60°,

lBQ=

(2)由折疊的性質(zhì)可得,BPBP,AB′=AB=10

RtB'OP中,OP2+(1010)2=(10-OP)2

解得OP=1010,

S陰影=S扇形AOB/span>-2SAOP=

=25π100+100;

探究:如圖2,找點O關(guān)于PQ的對稱點O′,連接OO′、O′B、O′C、O′P,

OM=O′M,OO′PQ,O′P=OP=3,點O′所在圓的圓心,

O′C=OB=10,

∵折疊后的弧QB′恰好與半徑OA相切于C點,

O′CAO,

O′COB,

∴四邊形OCO′B是矩形,

RtO′BP中,O′B=

RtOBO′K,OO′=

OM=OO′=×=,

O到折痕PQ的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,DC>AD,四個角的平分線AE,DE,BF,CF的交點分別是E,F(xiàn),過點E,F(xiàn)分別作DCAB間的垂線MM'NN',在DCAB上的垂足分別是M,NM′,N′,連接EF.

(1)求證:四邊形EFNM是矩形;

(2)已知:AE=4,DE=3,DC=9,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積ycm2)隨時間xs)變化的關(guān)系圖象,則a的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在春季運動會上,某學(xué)校教工組和學(xué)生組進行定點投籃比賽,每組均派五名選手參加,每名選手投籃十次,投中記1分,不中記零分,3分以上(3)視為合格,比賽成績繪制成條形統(tǒng)計圖如下:

投籃成績條形統(tǒng)計圖

(1)請你根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)填寫表格:

組別

平均數(shù)

中位數(shù)

方差

合格率

教工組

________

3

________

80%

學(xué)生組

3.6

________

3.44

60%

(2)如果小亮認為教工組的成績優(yōu)于學(xué)生組,你認為他的理由是什么?小明認為學(xué)生組成績優(yōu)于教工組,他的理由又是什么?

(3)若再讓一名體育教師投籃后,六名教師成績平均數(shù)大于學(xué)生組成績的中位數(shù),設(shè)這名體育教師命中m分,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張華發(fā)現(xiàn)某月的日歷中一個有趣的問題,他用筆在上面畫如圖所示的十字框,若設(shè)任意一個十字框里的五個數(shù)為a、b、c、d、k.設(shè)中間的一個數(shù)為k,如圖:試回答下列問題:

(1)此日歷中能畫出   個十字框?

(2)若a+b+c+d=84,求k的值;

(3)是否存在k的值,使得a+b+c+d=108,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=(x+2)(x﹣8)與x軸交于A,B兩點,與y軸交于點C,頂點為M,以AB為直徑作⊙D.下列結(jié)論:①拋物線的對稱軸是直線x=3;②⊙D的面積為16π;③拋物線上存在點E,使四邊形ACED為平行四邊形;④直線CM與⊙D相切.其中正確結(jié)論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AB=4,BC=2,將ABC繞點B順時針方向旋轉(zhuǎn)到A′BC′的位置,此時點A′恰好在CB的延長線上,則圖中陰影部分的面積為_____(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的方格地面上,標有編號AB、C的3個小方格地面是空地,另外6個小方格地面是草坪,除此以外小方格地面完全相同.

(1)一只自由飛行的鳥,將隨意地落在圖中的方格地面上,問小鳥落在草坪上的概率是多少?

(2)現(xiàn)從3個小方格空地中任意選取2個種植草坪,則剛好選取AB的2個小方格空地種植草坪的概率是多少(用樹形圖或列表法求解)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,AC=5,DAB=DCB=90°,則四邊形ABCD的面積為( 。

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

同步練習(xí)冊答案