【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對(duì)角線AC繞對(duì)角線交點(diǎn)O旋轉(zhuǎn),分別交邊AD、BC于點(diǎn)E、F,點(diǎn)P是邊DC上的一個(gè)動(dòng)點(diǎn),且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= 。(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運(yùn)動(dòng)過(guò)程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請(qǐng)說(shuō)明理由.
【答案】(1)PC=3﹣x,F(xiàn)C=x;(2)當(dāng)x=時(shí),△PEF面積的最小值為;(3)PE⊥PF不成立理由見(jiàn)解析.
【解析】
(1)由矩形的性質(zhì)可得AD∥BC,DC=AB=3,AO=CO,可證△AEO≌△CFO,可得AE=CF=x,由DP=AE=x,可得PC=3﹣x;
(2)由S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,可得S△EFP=x2﹣x+6=(x﹣)2+,根據(jù)二次函數(shù)的性質(zhì)可求△PEF面積的最小值;
(3)若PE⊥PF,則可證△DPE≌△CFP,可得DE=CP,即3﹣x=4﹣x,方程無(wú)解,則不存在x的值使PE⊥PF.
(1)∵四邊形ABCD是矩形
∴AD∥BC,DC=AB=3,AO=CO
∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF
∴△AEO≌△CFO(ASA)
∴AE=CF
∵AE=x,且DP=AE
∴DP=x,CF=x,DE=4﹣x,
∴CP=3﹣x,PC=CD﹣DP=3﹣x
故答案為:3﹣x,x
(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,
∴S△EFP=
=x2﹣x+6=(x﹣)2+
∴當(dāng)x=時(shí),△PEF面積的最小值為.
(3)不成立
理由如下:若PE⊥PF,則∠EPD+∠FPC=90°
又∵∠EPD+∠DEP=90°
∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°
∴△DPE≌△CFP(AAS)
∴DE=CP
∴3﹣x=4﹣x
則方程無(wú)解,
∴不存在x的值使PE⊥PF,
即PE⊥PF不成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.
(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫(xiě)出當(dāng)x>0時(shí)不等式2x+6﹣<0的解集;
(3)直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,AC=8,將線段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°到線段AD.△EFG由△ABC沿CB方向平移得到,且直線EF過(guò)點(diǎn)D.
(I)求∠1的大。
(Ⅱ)求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),“在初中數(shù)學(xué)教學(xué)候總使用計(jì)算器是否直接影響學(xué)生計(jì)算能力的發(fā)展”這一問(wèn)題受到了廣泛關(guān)注,為此,某校隨機(jī)調(diào)查了n名學(xué)生對(duì)此問(wèn)題的看法(看法分為三種:沒(méi)有影響,影響不大,影響很大),并將調(diào)查結(jié)果 繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問(wèn)題:
n名學(xué)生對(duì)使用計(jì)算器影響計(jì)算能力的發(fā)展看法人數(shù)統(tǒng)計(jì)表
看法 | 沒(méi)有影響 | 影響不大 | 影響很大 |
學(xué)生人數(shù)(人) | 40 | 60 | m |
(1)求n的值;
(2)統(tǒng)計(jì)表中的m= ;
(3)估計(jì)該校1800名學(xué)生中認(rèn)為“影響很大”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠C=72°,△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)C的對(duì)應(yīng)點(diǎn)C1落在邊AC上時(shí),設(shè)AC的對(duì)應(yīng)邊A1C1與AB的交點(diǎn)為E,則∠BEC1=___°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,C,D都在格點(diǎn)上.
(Ⅰ)AC的長(zhǎng)為 ;
(Ⅱ)將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得矩形AEFG,其中,點(diǎn)C的對(duì)應(yīng)點(diǎn)F落在格線AD的延長(zhǎng)線上,請(qǐng)用無(wú)刻度的直尺在網(wǎng)格中畫(huà)出矩形AEFG,并簡(jiǎn)要說(shuō)明點(diǎn)E,G的位置是如何找到的. .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋中裝有5個(gè)只有顏色不同的球,其中3個(gè)黃球,2個(gè)黑球.
(1)求從袋中同時(shí)摸出的兩個(gè)球都是黃球的概率;
(2)現(xiàn)將黑球和白球若干個(gè)(黑球個(gè)數(shù)是白球個(gè)數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個(gè)球是黑球的概率是,求放入袋中的黑球的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),直線與拋物線交于、兩點(diǎn),其中點(diǎn)的橫坐標(biāo)為2.
(1)求、兩點(diǎn)的坐標(biāo)及直線的函數(shù)表達(dá)式;
(2)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的平行線交拋物線于點(diǎn),求線段長(zhǎng)度的最大值;
(3)點(diǎn)是拋物線上的動(dòng)點(diǎn),在軸上是否存在點(diǎn),使、、、四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,寫(xiě)出所有滿足條件的點(diǎn)坐標(biāo)(請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo),不要求寫(xiě)過(guò)程);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O的上,點(diǎn)E在⊙O的外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com