【題目】閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0

,只有當(dāng)ab時(shí),等號(hào)成立.

結(jié)論:在a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)ab時(shí),a+b有最小值

根據(jù)上述內(nèi)容,回答下列問(wèn)題:

m0,只有當(dāng)m 時(shí),有最小值

思考驗(yàn)證:如圖1AB為半圓O的直徑,C為半圓上任意一點(diǎn)(與點(diǎn)A、B不重合),過(guò)點(diǎn)CCDAB,垂足為DADa,DBb

試根據(jù)圖形驗(yàn)證,并指出等號(hào)成立時(shí)的條件.

探索應(yīng)用:如圖2,已知A(3,0),B(0,-4),P為雙曲線(xiàn)x0)上的任意一點(diǎn),過(guò)點(diǎn)PPCx軸于點(diǎn)C,PDy軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說(shuō)明此時(shí)四邊形ABCD的形狀.

【答案】閱讀理解:1;2;思考驗(yàn)證:證明見(jiàn)解析;當(dāng)CD等于半徑時(shí),等號(hào)成立;探索應(yīng)用:24;菱形.

【解析】

閱讀理解:讀懂題意即可得到結(jié)果;

思考驗(yàn)證:先證RtCADRtBCD,根據(jù)相似三角形的對(duì)應(yīng)邊乘比例即可表示出CD,分兩種情況討論:

若點(diǎn)DO不重合,連OC,在RtOCD中,;若點(diǎn)DO重合,

綜上所述,,當(dāng)CD等于半徑時(shí),等號(hào)成立.

探索應(yīng)用:設(shè)出點(diǎn)P的坐標(biāo),即可表示出CA、DB,從而得到四邊形ABCD面積的函數(shù)關(guān)系式,根據(jù)函數(shù)關(guān)系式的特征即可得到結(jié)果.

解:(1)∵a+b≥a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)a=b時(shí),a+b有最小值2
,

,
當(dāng)m=時(shí),

解得:m=1-1(不合題意舍去),

故當(dāng)m=1(填不扣分),最小值是2;

故答案為:1;2;

思考驗(yàn)證:∵AB是的直徑,

ACBC

又∵CDAB

∴∠CAD=BCD=90°-B

RtCADRtBCD, CD2=AD·DB, CD=  

若點(diǎn)DO不重合,連OC,在RtOCD中,

OC>CD,

,

若點(diǎn)DO重合時(shí),OC=CD,∴ 

綜上所述,,即,當(dāng)CD等于半徑時(shí),等號(hào)成立.

探索應(yīng)用:設(shè), 則,,

,化簡(jiǎn)得:

,只有當(dāng),

時(shí),等號(hào)成立

S≥2×61224,

S四邊形ABCD有最小值24.

此時(shí),P(3,4)C(3,0),D(04),AB=BC=CD=DA=5

∴四邊形ABCD是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護(hù)人員支援湖北武漢抗擊疫情.

(1)若從甲、乙兩醫(yī)院支援的醫(yī)護(hù)人員中分別隨機(jī)選1名,則所選的2名醫(yī)護(hù)人員性別相同的概率是    ;

(2)若從支援的4名醫(yī)護(hù)人員中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名醫(yī)護(hù)人員來(lái)自同一所醫(yī)院的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EF分別是邊AD、CD上的點(diǎn),AE=ED,DC=4DF,連接EF并延長(zhǎng)交BC的延長(zhǎng)線(xiàn)于點(diǎn)G

1)求證:△ABE∽△DEF;

2)若正方形的邊長(zhǎng)為16,求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和1分鐘跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為參加這兩項(xiàng)比賽的10名學(xué)生的預(yù)賽成績(jī):

學(xué)生編號(hào)

成績(jī)

項(xiàng)目

3104

3508

3115

3406

3317

3413

3218

3307

3519

3210

立定跳遠(yuǎn)(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

1分鐘跳繩(單位:次)

163

175

160

163

172

170

165

在這10名學(xué)生中,同時(shí)進(jìn)入兩項(xiàng)決賽的只有6人,進(jìn)入立定跳遠(yuǎn)決賽的有8人,如果知道在同時(shí)進(jìn)入兩項(xiàng)決賽的6人中有“3508號(hào)”學(xué)生,沒(méi)有“3307號(hào)”學(xué)生,那么的值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛快車(chē)從甲地出發(fā)到乙地,一輛慢車(chē)從乙地出發(fā)到甲地,兩車(chē)同時(shí)出發(fā),勻速行駛,慢車(chē)到甲地后停止行駛,快車(chē)到乙地后休息半小時(shí),然后以另一速度返回甲地.兩車(chē)之間的距離(千米)與快車(chē)行駛的時(shí)間(小時(shí))之間的函數(shù)關(guān)系,如圖所示.當(dāng)慢車(chē)到達(dá)甲地時(shí),快車(chē)與乙地的距離為_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在反比例函數(shù)的圖象上有一動(dòng)點(diǎn),連接并延長(zhǎng)交圖象的另一支于點(diǎn),在第二象限內(nèi)有一點(diǎn),滿(mǎn)足,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)始終在函數(shù)的圖象上運(yùn)動(dòng),若,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰RtABC和⊙O如圖放置,已知AB=BC=1,ABC=90°,O的半徑為1,圓心O與直線(xiàn)AB的距離為5.

(1)若ABC以每秒2個(gè)單位的速度向右移動(dòng),⊙O不動(dòng),則經(jīng)過(guò)多少時(shí)間ABC的邊與圓第一次相切?

(2)若兩個(gè)圖形同時(shí)向右移動(dòng),ABC的速度為每秒2個(gè)單位,⊙O的速度為每秒1個(gè)單位,則經(jīng)過(guò)多少時(shí)間ABC的邊與圓第一次相切?

(3)若兩個(gè)圖形同時(shí)向右移動(dòng),ABC的速度為每秒2個(gè)單位,⊙O的速度為每秒1個(gè)單位,同時(shí)ABC的邊長(zhǎng)AB、BC都以每秒0.5個(gè)單位沿BA、BC方向增大.ABC的邊與圓第一次相切時(shí),點(diǎn)B運(yùn)動(dòng)了多少距離?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形的邊長(zhǎng)是,點(diǎn)分別在邊上,,垂足為.把沿折疊得到,若恰為等腰角形,則的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,CACB,0°<∠C90°.過(guò)點(diǎn)A作射線(xiàn)APBC,點(diǎn)M、N分別在邊BC、AC上(點(diǎn)MN不與所在線(xiàn)段端點(diǎn)重合),且BMAN,連結(jié)BN并延長(zhǎng)交AP于點(diǎn)D,連結(jié)MA并延長(zhǎng)交AD的垂直平分線(xiàn)于點(diǎn)E,連結(jié)ED

(猜想)如圖,當(dāng)∠C45°時(shí),可證△BCN≌△ACM,從而得出∠CBN=∠CAM,進(jìn)而得出∠BDE的大小為   度.

(探究)如圖,若∠Cα

1)求證:△BCN≌△ACM

2)∠BDE的大小為   度(用含a的代數(shù)式表示).

(應(yīng)用)如圖,當(dāng)∠C90°時(shí),連結(jié)BE.若BC3,∠BAM15°,則△BDE的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案