【題目】在平面直角坐標(biāo)系中,已知拋物線(b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
(1)如圖,若該拋物線過A,B兩點(diǎn),求該拋物線的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動,且與AC交于另一點(diǎn)Q.
(i)若點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時,求出所有符合條件的點(diǎn)M的坐標(biāo);
(ii)取BC的中點(diǎn)N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.
【答案】解:(1)由題意,得點(diǎn)B的坐標(biāo)為(4,﹣1).
∵拋物線過A(0,﹣1),B(4,﹣1)兩點(diǎn),
∴,解得。
∴拋物線的函數(shù)表達(dá)式為:。
(2)(i)∵A(0,﹣1),C(4,3),∴直線AC的解析式為:y=x﹣1。
設(shè)平移前拋物線的頂點(diǎn)為P0,則由(1)可得P0的坐標(biāo)為(2,1),且P0在直線AC上。
∵點(diǎn)P在直線AC上滑動,∴可設(shè)P的坐標(biāo)為(m,m﹣1)。
則平移后拋物線的函數(shù)表達(dá)式為:。
解方程組:,解得,。
∴P(m,m﹣1),Q(m﹣2,m﹣3)。
過點(diǎn)P作PE∥x軸,過點(diǎn)Q作QE∥y軸,則
PE=m﹣(m﹣2)=2,QE=(m﹣1)﹣(m﹣3)=2,
∴PQ==AP0。
若△MPQ為等腰直角三角形,則可分為以下兩種情況:
①當(dāng)PQ為直角邊時:點(diǎn)M到PQ的距離為(即為PQ的長),
由A(0,﹣1),B(4,﹣1),P0(2,1)可知,
△ABP0為等腰直角三角形,且BP0⊥AC,BP0=。
如答圖1,過點(diǎn)B作直線l1∥AC,交拋物線于點(diǎn)M,則M為符合條件的點(diǎn)。
∴可設(shè)直線l1的解析式為:y=x+b1。
∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5。∴直線l1的解析式為:y=x﹣5。
解方程組,得:,。
∴M1(4,﹣1),M2(﹣2,﹣7)。
②當(dāng)PQ為斜邊時:MP=MQ=2,可求得點(diǎn)M到PQ的距離為.
如答圖1,取AB的中點(diǎn)F,則點(diǎn)F的坐標(biāo)為(2,﹣1)。
由A(0,﹣1),F(xiàn)(2,﹣1),P0(2,1)可知:
△AFP0為等腰直角三角形,且點(diǎn)F到直線AC的距離為。
過點(diǎn)F作直線l2∥AC,交拋物線于點(diǎn)M,則M為符合條件的點(diǎn)。
∴可設(shè)直線l2的解析式為:y=x+b2,
∵F(2,﹣1),∴﹣1=2+b2,解得b1=﹣3。∴直線l2的解析式為:y=x﹣3。
解方程組,得:,。
∴M3(,),M4(,)。
綜上所述,所有符合條件的點(diǎn)M的坐標(biāo)為:
M1(4,﹣1),M2(﹣2,﹣7),M3(,),M4(,)。
(ii)存在最大值。理由如下:
由(i)知PQ=為定值,則當(dāng)NP+BQ取最小值時,有最大值。
如答圖2,取點(diǎn)B關(guān)于AC的對稱點(diǎn)B′,易得點(diǎn)B′的坐標(biāo)為(0,3),BQ=B′Q。
連接QF,F(xiàn)N,QB′,易得FN∥PQ,且FN=PQ,
∴四邊形PQFN為平行四邊形。
∴NP=FQ。
∴NP+BQ=FQ+B′P≥FB′。
∴當(dāng)B′、Q、F三點(diǎn)共線時,NP+BQ最小,最小值為。
∴的最大值為。
【解析】(1)先求出點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求出拋物線的函數(shù)表達(dá)式。
(2)(i)首先求出直線AC的解析式和線段PQ的長度,作為后續(xù)計(jì)算的基礎(chǔ)。
若△MPQ為等腰直角三角形,則可分為以下兩種情況:
①當(dāng)PQ為直角邊時:點(diǎn)M到PQ的距離為.此時,將直線AC向右平移4個單位后所得直線(y=x﹣5)與拋物線的交點(diǎn),即為所求之M點(diǎn)。
②當(dāng)PQ為斜邊時:點(diǎn)M到PQ的距離為.此時,將直線AC向右平移2個單位后所得直線(y=x﹣3)與拋物線的交點(diǎn),即為所求之M點(diǎn).
(ii)由(i)可知,PQ=為定值,因此當(dāng)NP+BQ取最小值時,有最大值。如答圖2所示,作點(diǎn)B關(guān)于直線AC的對稱點(diǎn)B′,由解析可知,當(dāng)B′、Q、F(AB中點(diǎn))三點(diǎn)共線時,NP+BQ最小,最小值為線段B′F的長度。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過兩點(diǎn).
(1)求這個二次函數(shù)的表達(dá)式;
(2)若是直線上方拋物線上一點(diǎn);
①當(dāng)的面積最大時,求點(diǎn)的坐標(biāo);
②在①的條件下,點(diǎn)關(guān)于拋物線對稱軸的對稱點(diǎn)為,在直線上是否存在點(diǎn),使得直線與直線的夾角是的兩倍,若存在,直接寫出點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是半圓的直徑,點(diǎn)C是弧BD的中點(diǎn),∠BAD=70°,則∠ADC等于( 。
A. 50° B. 55° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+4ax+c(a≠0)的圖象交x軸于A、B兩點(diǎn)(A在B的左側(cè)),交y軸于點(diǎn)C.一次函數(shù)y=﹣x+b的圖象經(jīng)過點(diǎn)A,與y軸交于點(diǎn)D(0,﹣3),與這個二次函數(shù)的圖象的另一個交點(diǎn)為E,且AD:DE=3:2.
(1)求這個二次函數(shù)的表達(dá)式;
(2)若點(diǎn)M為x軸上一點(diǎn),求MD+MA的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校初中各年級學(xué)生每天的平均睡眠時間(單位:h,精確到1h),抽樣調(diào)查了部分學(xué)生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出扇形統(tǒng)計(jì)圖中百分?jǐn)?shù)a的值為 ,所抽查的學(xué)生人數(shù)為 .
(2)求出平均睡眠時間為8小時的人數(shù),并補(bǔ)全頻數(shù)直方圖.
(3)求出這部分學(xué)生的平均睡眠時間的眾數(shù)和平均數(shù).
(4)如果該校共有學(xué)生1200名,請你估計(jì)睡眠不足(少于8小時)的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小微企業(yè)為加快產(chǎn)業(yè)轉(zhuǎn)型升級步伐,引進(jìn)一批A,B兩種型號的機(jī)器.已知一臺A型機(jī)器比一臺B型機(jī)器每小時多加工2個零件,且一臺A型機(jī)器加工80個零件與一臺B型機(jī)器加工60個零件所用時間相等.
(1)每臺A,B兩種型號的機(jī)器每小時分別加工多少個零件?
(2)如果該企業(yè)計(jì)劃安排A,B兩種型號的機(jī)器共10臺一起加工一批該零件,為了如期完成任務(wù),要求兩種機(jī)器每小時加工的零件不少于72件,同時為了保障機(jī)器的正常運(yùn)轉(zhuǎn),兩種機(jī)器每小時加工的零件不能超過76件,那么A,B兩種型號的機(jī)器可以各安排多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知雙曲線y=(x<0)和 y=(x>0),直線OA與雙曲線y=交于點(diǎn)A,將直線OA向下平移與雙曲線y=交于點(diǎn)B,與y軸交于點(diǎn)P,與雙曲線y=交于點(diǎn)C,S△ABC=6,,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E在邊CD上(不與點(diǎn)C,D重合),連接AE,BD交于點(diǎn)F.
(1)若點(diǎn)E為CD中點(diǎn),AB=2,求AF的長.
(2)若∠AFB=2,求的值.
(3)若點(diǎn)G在線段BF上,且GF=2BG,連接AG,CG,設(shè)=x,四邊形AGCE的面積為,ABG的面積為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,請?jiān)谙铝兴膫關(guān)系中,選出兩個恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com