精英家教網 > 初中數學 > 題目詳情
(2010•衡陽)已知:等邊三角形ABC的邊長為4厘米,長為1厘米的線段MN在△ABC的邊AB上沿AB方向以1厘米/秒的速度向B點運動(運動開始時,點M與點A重合,點N到達點B時運動終止),過點M、N分別作AB邊的垂線,與△ABC的其它邊交于P、Q兩點,線段MN運動的時間為t秒.
(1)線段MN在運動的過程中,t為何值時,四邊形MNQP恰為矩形并求出該矩形的面積;
(2)線段MN在運動的過程中,四邊形MNQP的面積為S,運動的時間為t,求四邊形MNQP的面積S隨運動時間t變化的函數關系式,并寫出自變量t的取值范圍.

【答案】分析:(1)過點C作CD⊥AB,垂足為D.當PQ∥AB時即可得出四邊形MNQP是矩形,根據特殊角的三角函數值求出四邊形MNQP的面積;
(2)根據①當0<t<1時;②當1≤t≤2時;③當2<t<3時,分別求出四邊形MNQP的面積,即四邊形MNQP的面積S隨運動時間t變化的函數關系式.
解答:解:(1)過點C作CD⊥AB,垂足為D,則AD=2,
當MN運動到被CD垂直平分時,四邊形MNQP是矩形,
即當AM=時,四邊形MNQP是矩形,
∴t=秒時,四邊形MNQP是矩形,
∵PM=AMtan60°=,
PQ=MN=AB-2AM=4-3=1,
∴S四邊形MNQP=PM•PQ=;

(2)①當0<t≤1時,點P、Q都在AC上,并且四邊形PMNQ為直角梯形,
在Rt△AMP中,
∵∠A=60°,AM=t,tan∠A=,
∴PM=tan60°×AM=AM=t,
在Rt△ANQ中,
而AN=AM+MN=t+1,
∴QN=AN=(t+1),
∴S四邊形MNQP=(PM+QN)MN=[t+(t+1)]=t+
②當1<t<2時,
點P在AC上,點Q在BC上,
PM=t,
BN=AB-AM-MN=4-1-t=3-t,
在Rt△BNQ中,
QN=BN=(3-t),
∴S四邊形MNQP=(PM+QN)MN=[t+(3-t)]×1=;
③當2≤t<3時,點P、Q都在BC上,
BM=4-t,BN=3-t,
∴PM=BM=(4-t),QN=BN=(3-t),
∴S四邊形MNQP=(PM+QN)MN=[(3-t)+(4-t)]=-t.        (10分)
點評:本題涉及到動點問題,比較復雜,解答此題的關鍵是根據題意畫出圖形,由數形結合便可解答,體現了數形結合在解題中的重要作用.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《一次函數》(05)(解析版) 題型:解答題

(2010•衡陽)已知:等邊三角形ABC的邊長為4厘米,長為1厘米的線段MN在△ABC的邊AB上沿AB方向以1厘米/秒的速度向B點運動(運動開始時,點M與點A重合,點N到達點B時運動終止),過點M、N分別作AB邊的垂線,與△ABC的其它邊交于P、Q兩點,線段MN運動的時間為t秒.
(1)線段MN在運動的過程中,t為何值時,四邊形MNQP恰為矩形并求出該矩形的面積;
(2)線段MN在運動的過程中,四邊形MNQP的面積為S,運動的時間為t,求四邊形MNQP的面積S隨運動時間t變化的函數關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《三角形》(13)(解析版) 題型:解答題

(2010•衡陽)已知:如圖,在等邊三角形ABC的AC邊上取中點D,BC的延長線上取一點E,使CE=CD.求證:BD=DE.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《一次函數》(06)(解析版) 題型:解答題

(2010•衡陽)已知:等邊三角形ABC的邊長為4厘米,長為1厘米的線段MN在△ABC的邊AB上沿AB方向以1厘米/秒的速度向B點運動(運動開始時,點M與點A重合,點N到達點B時運動終止),過點M、N分別作AB邊的垂線,與△ABC的其它邊交于P、Q兩點,線段MN運動的時間為t秒.
(1)線段MN在運動的過程中,t為何值時,四邊形MNQP恰為矩形并求出該矩形的面積;
(2)線段MN在運動的過程中,四邊形MNQP的面積為S,運動的時間為t,求四邊形MNQP的面積S隨運動時間t變化的函數關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2010年湖南省衡陽市中考數學試卷(解析版) 題型:解答題

(2010•衡陽)已知:如圖,在等邊三角形ABC的AC邊上取中點D,BC的延長線上取一點E,使CE=CD.求證:BD=DE.

查看答案和解析>>

同步練習冊答案