【題目】如圖,P是等邊三角形ABC內(nèi)一點,將線段AP繞點A順時針旋轉60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為

【答案】24+9

【解析】

試題分析:如圖,連結PQ,根據(jù)等邊三角形的性質(zhì)得BAC=60°,AB=AC,再根據(jù)旋轉的性質(zhì)得AP=PQ=6,PAQ=60°,即可判定APQ為等邊三角形,所以PQ=AP=6;在APC和ABQ中,AB=AC,CAP=BAQ,AP=PQ,利用SAS判定APC≌△ABQ,根據(jù)全等三角形的性質(zhì)可得PC=QB=10;在BPQ中,已知PB2=82=64,PQ2=62,BQ2=102,即PB2+PQ2=BQ2,所以PBQ為直角三角形,BPQ=90°,所以S四邊形APBQ=SBPQ+SAPQ=×6×8+×62=24+9

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形ABCD,AB=9,AD=4. ECD邊上一點,CE=6.

(1)求AE的長.

(2)點P從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE. 設點P運動的時間為t秒,則當t為何值時,△PAE為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)觀察與歸納:在如圖1所示的平面直角坐標系中,直線l與y軸平行,點M與點N 是直線l上的兩點(點M在點N的上方).

①亮亮發(fā)現(xiàn):若點M坐標為(2,3),點N坐標為(2,﹣4),則MN的長度為_____; ②亮亮經(jīng)過多次取l上的兩點后,他歸納出這樣的結論:若點M坐標為(t,m),點N坐標為(t,n),當m>n時,MN的長度可表示為______;

(2)如圖2,四邊形OABC的頂點O是坐標原點,點A在第一象限,OAB=90,OA=AB,點C在第四象限,B點的坐標為(6,0),且OC=5.點P是線段OB上的一個動點(點P不與點0、B重合),過點P作與y軸平行的直線l,設點P橫坐標為t.

①已知當t=4時,直線l恰好經(jīng)過點C,求點A、C兩點的坐標;

②在①的條件下,直線l上有一點M,當MB=OC時,直接寫出滿足條件的點M坐標;

③如圖3延長線段BAy軸于點D將線段BD順時針旋轉60,D點的對應點為點E,是否存 x軸上的點Q,使得QD+QE的值最小,若存在請求出點Q的坐標,并求出OQD的度數(shù); 若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016湖北省荊州市第10題)如圖,在RtAOB中,兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,將AOB繞點B逆時針旋轉90°后得到AOB.若反比例函數(shù)的圖象恰好經(jīng)過斜邊AB的中點C,SABO=4,tanBAO=2,則k的值為(

A.3 B.4 C.6 D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列等式成立的是

A. -23=(-2)3 B. -32=(-3)2 C. -3×23=-32×2 D. -32=-23

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】D為等腰Rt△ABC斜邊AB的中點,DM⊥DN,DM,DN分別交BC,CA于點E,F(xiàn).

(1)當∠MDN繞點D轉動時,求證:DE=DF.

(2)若AB=2,求四邊形DECF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】O與直線l有兩個交點,且圓的半徑為3,則圓心O到直線l的距離不可能是(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E、H分別在AB、AC上,已知BC=40cm,AD=30cm.

(1)求證:△AEH∽△ABC;

(2)求這個正方形的邊長與面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程
(1)5x﹣2=7x+6
(2)4x+3(2x﹣5)=7﹣x.

查看答案和解析>>

同步練習冊答案