【題目】在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:已知:△ABC是⊙O的內(nèi)接三角形.求作:△ABC中∠BAC的平分線.

小明的作法如下:

1)作BC邊的垂直平分線DE,交BC于點(diǎn)D,交弧BC于點(diǎn)E

2)連接AE,交BC邊于點(diǎn)F;則線段AF為所求△ABC中∠BAC的平分線.根據(jù)小明設(shè)計的尺規(guī)作圖過程,

①在圖中補(bǔ)全圖形(尺規(guī)作圖,保留作圖痕跡);

②完成下面的證明.

證明:∵OBOC,DE是線段BC的垂直平分線

∴圓心O在直線DE上(   ).

DEBC,

   ).

∴∠BAE=∠CAE   ),

∴線段AF為所求△ABC中∠BAC的平分線.

【答案】到線段兩端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上;垂徑定理;圓周角定理

【解析】

1)根據(jù)幾何語言畫出對應(yīng)的幾何圖形;
2)根據(jù)線段垂直平分線的性質(zhì)得到DEBC,則利用垂徑定理得到弧BE=CE,然后根據(jù)圓周角定理得到∠BAE=CAE

1)如圖,

2)證明:∵OBOC,DE是線段BC的垂直平分線

∴圓心O在直線DE上(到線段兩端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上).

DEBC,

(垂徑定理).

∴∠BAE=∠CAE(圓周角定理),

∴線段AF為所求ABC中∠BAC的平分線.

故答案為到線段兩端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上;垂徑定理;圓周角定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2.

(1)第一批飲料進(jìn)貨單價多少元?

(2)若二次購進(jìn)飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,我們不妨將橫坐標(biāo),縱坐標(biāo)均為整數(shù)的點(diǎn)稱之為中國結(jié)。

1)求函數(shù)y=x+2的圖像上所有中國結(jié)的坐標(biāo);

2)求函數(shù)y=k≠0,k為常數(shù))的圖像上有且只有兩個中國結(jié),試求出常數(shù)k的值與相應(yīng)中國結(jié)的坐標(biāo);

3)若二次函數(shù)y=k為常數(shù))的圖像與x軸相交得到兩個不同的中國結(jié),試問該函數(shù)的圖像與x軸所圍成的平面圖形中(含邊界),一共包含有多少個中國結(jié)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L上有三個正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )

A.8 B.9 C.10 D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于兩點(diǎn),拋物線經(jīng)過點(diǎn),與軸另一交點(diǎn)為,頂點(diǎn)為

1)求拋物線的解析式;

2)在軸上找一點(diǎn),使的值最小,求的最小值;

3)在拋物線的對稱軸上是否存在一點(diǎn),使得?若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,ABC中AB=AC,AE是角平分線,BM平分ABC交AE于點(diǎn)M,經(jīng)過B、M兩點(diǎn)的O交BC于G,交AB于點(diǎn)F,F(xiàn)B恰為O的直徑.

(1)求證:AE與O相切;

(2)當(dāng)BC=6,cosC=,求O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知PA與⊙O相切于點(diǎn)A,B、C是⊙O上的兩點(diǎn)

1)如圖①,PB與⊙O相切于點(diǎn)B,AC是⊙O的直徑若∠BAC25°;求∠P的大小

2)如圖②,PB與⊙O相交于點(diǎn)D,且PDDB,若∠ACB90°,求∠P的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點(diǎn)均在小正方形的頂點(diǎn)上.

1)在圖1中畫一個以線段AC為對角線、周長為20的四邊形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上,并求出BD的長;

2)在圖2中畫一個以線段AC為對角線、面積為10的四邊形ABCD,且點(diǎn)B和點(diǎn)D均在小正方形的頂點(diǎn)上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y2x+6與反比例函數(shù)的圖象交于點(diǎn)A1m),與x軸交于點(diǎn)B,平行于x軸的直線yn0n6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM

1)求m的值和反比例函數(shù)的表達(dá)式;

2)觀察圖象,直接寫出當(dāng)x0時,不等式2x+6-0的解集;

3)當(dāng)n為何值時,BMN的面積最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案