【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.
(1)補(bǔ)全△A′B′C′根據(jù)下列條件,利用網(wǎng)格點(diǎn)和三角板畫圖:
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積
【答案】解:(1)如圖所示:△A′B′C′即為所求;
(2)如圖所示:CD就是所求的中線;
(3)如圖所示:AE即為BC邊上的高;
(4)4×4÷2=16÷2=8.
故△A′B′C′的面積為8.
故答案為:8.
【解析】(1)連接BB′,過(guò)A、C分別做BB′的平行線,并且在平行線上截取AA′=CC′=BB′,順次連接平移后各點(diǎn),得到的三角形即為平移后的三角形;
(2)作AB的垂直平分線找到中點(diǎn)D,連接CD,CD就是所求的中線.
(3)從A點(diǎn)向BC的延長(zhǎng)線作垂線,垂足為點(diǎn)E,AE即為BC邊上的高;
(4)根據(jù)三角形面積公式即可求出△A′B′C′的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中.
(1)把△ABC平移至A′的位置,使點(diǎn)A與A′對(duì)應(yīng),得到△A′B′C′;
(2)圖中可用字母表示,與線段AA′平行且相等的線段有哪些?
(3)求四邊形ACC′A′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】寧波奧林匹克體育中心坐落于江北區(qū),一期“三館一圓”總投資35億元,其中35億元用科學(xué)記數(shù)法表示為( )
A.0.35×1010元
B.3.5×108元
C.3.5×109元
D.35×108元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)等腰三角形的兩邊長(zhǎng)是3cm和7cm,則它的周長(zhǎng)為( )
A. 13cm B. 17cm C. 13或17cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A.4m6÷2m3=2m2B.2x2+x3=3x5
C.(ab2)3=a3b5D.2a2a2=2a4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)探究:
(1)動(dòng)手操作:
①如圖1,將一塊直角三角板DEF放置在直角三角板ABC上,使三角板DEF的兩條直角邊DE、DF分別經(jīng)過(guò)點(diǎn)B、C,且BC∥EF,已知∠A=30°,則∠ABD+∠ACD=
②如圖2,若直角三角板ABC不動(dòng),改變等腰直角三角板DEF的位置,使三角板DEF的兩條直角邊DE、DF仍然分別經(jīng)過(guò)點(diǎn)B、C,那么∠ABD+∠ACD=
(2)猜想證明:
如圖3,∠BDC與∠A、∠B、∠C之間存在著 關(guān)系
(3)靈活應(yīng)用:
請(qǐng)你直接利用以上結(jié)論,解決以下列問(wèn)題:
①如圖4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,∠BEC
②如圖5,∠ABD,∠ACD的10等分線相交于點(diǎn)F1、F2、…、F9 ,
若∠BDC=120°,∠BF3C=64°,則∠A的度數(shù)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(4,﹣3),作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn),得到點(diǎn)A′,再作點(diǎn)A′關(guān)于y軸的對(duì)稱點(diǎn),得到點(diǎn)A″,則點(diǎn)A″的坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com