【題目】(1)如圖,已知∠AOB=∠COD=90°,試寫出兩個(gè)與圖①中角(直角除外)有關(guān)的結(jié)論:
(ⅰ)∠__ __=∠__ __,
(ⅱ)∠__ __+∠__ __=180°;
(2)請(qǐng)選擇(1)中的一個(gè)結(jié)論說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著社會(huì)的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時(shí)尚.“健身達(dá)人”小陳為了了解他的好友的運(yùn)動(dòng)情況.隨機(jī)抽取了部分好友進(jìn)行調(diào)查,把他們6月1日那天行走的情況分為四個(gè)類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計(jì)結(jié)果如圖所示:
請(qǐng)依據(jù)統(tǒng)計(jì)結(jié)果回答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 位好友.
(2)已知A類好友人數(shù)是D類好友人數(shù)的5倍.
①請(qǐng)補(bǔ)全條形圖;
②扇形圖中,“A”對(duì)應(yīng)扇形的圓心角為 度.
③若小陳微信朋友圈共有好友150人,請(qǐng)根據(jù)調(diào)查數(shù)據(jù)估計(jì)大約有多少位好友6月1日這天行走的步數(shù)超過10000步?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有以下3句話:①AB∥CD,②∠B=∠C、③∠E=∠F、請(qǐng)以其中2句話為條件,第三句話為結(jié)論構(gòu)造命題.
(1)你構(gòu)造的是哪幾個(gè)命題?
(2)你構(gòu)造的命題是真命題還是假命題?請(qǐng)加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,根據(jù)參加男子跳高初賽的運(yùn)動(dòng)員的成績(jī)(單位:m),繪制出如下兩幅統(tǒng)計(jì)圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)扇形統(tǒng)計(jì)圖中a= , 初賽成績(jī)?yōu)?.70m所在扇形圖形的圓心角為°;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)這組初賽成績(jī)的眾數(shù)是 m,中位數(shù)是 m;
(4)根據(jù)這組初賽成績(jī)確定8人進(jìn)入復(fù)賽,那么初賽成績(jī)?yōu)?.60m的運(yùn)動(dòng)員楊強(qiáng)能否進(jìn)入復(fù)賽?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知兩條射線OM∥CN,動(dòng)線段AB的兩個(gè)端點(diǎn)A、B分別在射線OM、CN上,且∠C=∠OAB=108°,F(xiàn)在線段CB上,OB平分∠AOF,OE平分∠COF.
(1)請(qǐng)?jiān)趫D中找出與∠AOC相等的角,并說明理由;
(2)若平行移動(dòng)AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值;
(3)在平行移動(dòng)AB的過程中,是否存在某種情況,使∠OEC=2∠OBA?若存在,請(qǐng)求出∠OBA度數(shù);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在線段AB的延長(zhǎng)線上,AC=BC,D在AB的反向延長(zhǎng)線上,BD=DC.
(1)在圖上畫出點(diǎn)C和點(diǎn)D的位置;
(2)設(shè)線段AB長(zhǎng)為x,則BC=__ __,AD=__ __;(用含x的代數(shù)式表示)
(3)設(shè)AB=12 cm,求線段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決問題時(shí)需要思考:是否解決過與其類似的問題.小明從問題1解題思路中獲得啟發(fā)從而解決了問題2.
(1)問題1:如圖①,在正方形ABCD中,E、F是BC、CD上兩點(diǎn),∠EAF=45°.
求證:∠AEF=∠AEB.
小明給出的思路為:延長(zhǎng)EB到H,滿足BH=DF,連接AH.請(qǐng)完善小明的證明過程.
(2)問題2:如圖②,在等腰直角△ABC中,∠ACB=90°,AC=BC=4,D為AB中點(diǎn),E、F是AC、BC邊上兩點(diǎn),∠EDF=45°.
①求點(diǎn)D到EF的距離.
②若AE=a,則S△DEF=(用含字母a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生課外閱讀的喜好,某校從八年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查要求每人只選取一種喜歡的書籍,如果沒有喜歡的書籍,則作“其它”類統(tǒng)計(jì)。圖(1)與圖(2)是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖。以下結(jié)論不正確的是( )
A. 由這兩個(gè)統(tǒng)計(jì)圖可知喜歡“科普常識(shí)”的學(xué)生有90人.
B. 若該年級(jí)共有1200名學(xué)生,則由這兩個(gè)統(tǒng)計(jì)圖可估計(jì)喜愛“科普常識(shí)”的學(xué)生約有360個(gè).
C. 由這兩個(gè)統(tǒng)計(jì)圖不能確定喜歡“小說”的人數(shù).
D. 在扇形統(tǒng)計(jì)圖中,“漫畫”所在扇形的圓心角為72°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,O為AC中點(diǎn),EF過點(diǎn)O且EF⊥AC分別交DC于點(diǎn)F,交AB于點(diǎn)E,點(diǎn)G是AE中點(diǎn)且∠AOG=30°,給出以下結(jié)論: ①∠AFC=120°;
②△AEF是等邊三角形;
③AC=3OG;
④S△AOG= S△ABC
其中正確的是 . (把所有正確結(jié)論的序號(hào)都選上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com