【題目】如圖,在菱形ABCD中,AB=2,∠BAD =60,AC交BD于點O,以點D為圓心的⊙D與邊AB相切于點E.
(1)、求AC的長;(2)、求證:⊙D與邊BC也相切
【答案】(1)、6;(2)、證明過程見解析.
【解析】
試題分析:(1)、根據(jù)菱形的性質(zhì)可得AC=2AO,然后根據(jù)AO=AB·cos∠BAO求出AO的長度,然后求出AC的長度;(2)、連接DE,過點D作DF⊥BC,根據(jù)菱形四邊形以及BD為角平分線得出切線.
試題解析:(1)、∵四邊形ABCD是菱形,∠BAD=60 ∴∠BAO=30,∠AOB=90,AC=2AO
∴AO=AB·cos∠BAO=3 ∴AC=6.
(2)、連接DE,過點D作DF⊥BC,垂足為點F∵四邊形ABCD是菱形, ∴BD平分∠ABC
∵⊙D與邊AB相切于點E,∴DE⊥AB ∵DF⊥BC ∴DF=DE ∴⊙D與邊BC也相切.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一張圓心角為108°,半徑為4cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為1cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的面積為( ).
A.0.8πcm2 B.3.2πcm2 C.4πcm2 D.4.8πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程kx2+2x+1=0有實數(shù)根,則實數(shù)k的取值范圍是( 。
A.k≤1B.k<1C.k≤1且k≠0D.k<1且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標(biāo)為(-1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.
(1)求拋物線的解析式;
(2)求△MCB的面積S△MCB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點O是等腰直角三角形ABC斜邊上的中點,AB=BC,E是AC上一點,連結(jié)EB.
(1) 如圖1,若點E在線段AC上,過點A作AM⊥BE,垂足為M,交BO于點F.求證:OE=OF;
(2)如圖2,若點E在AC的延長線上,AM⊥BE于點M,交OB的延長線于點F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“愛滿揚州”慈善一日捐活動中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計,并繪制成統(tǒng)計圖.
(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)求這50名同學(xué)捐款的平均數(shù);
(3)該校共有600名學(xué)生參與捐款,請估計該校學(xué)生的捐款總數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com