【題目】如圖所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點(diǎn)B,與OA交于點(diǎn)P,且OA2﹣AB2=18,則點(diǎn)P的橫坐標(biāo)為( )
A.9
B.6
C.3
D.3
【答案】C
【解析】解:設(shè)點(diǎn)B(a,b), ∵△OAC和△BAD都是等腰直角三角形,
∴OA= AC,AB= AD,OC=AC,AD=BD,
∵OA2﹣AB2=18,
∴2AC2﹣2AD2=18即AC2﹣AD2=9
∴(AC+AD)(AC﹣AD)=9,
∴(OC+BD)CD=9,
∴ab=9,
∴k=9,
∴反比例函數(shù)y= ,
∵△OAC是等腰直角三角形,
∴直線OA的解析式為y=x,
解 得 或 ,
∴P(3,3),
故選C.
先設(shè)點(diǎn)B坐標(biāo),再由等腰直角三角形的性質(zhì)得出OA= AC,AB= AD,OC=AC,AD=BD,代入OA2﹣AB2=18,得到ab=9,即可求得反比例函數(shù)的解析式,然后聯(lián)立方程,解方程即可求得P的橫坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△AOB中,C,D分別是OA,OB邊上的點(diǎn),將△OCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到△OC′D′.
(1)如圖1,若∠AOB=90°,OA=OB,C,D分別為OA,OB的中點(diǎn),證明:①AC′=BD′;②AC′⊥BD′;
(2)如圖2,若△AOB為任意三角形且∠AOB=θ,CD∥AB,AC′與BD′交于點(diǎn)E,猜想∠AEB=θ是否成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)y=,下列說法錯(cuò)誤的是( 。
A.這個(gè)函數(shù)的圖象位于第一、第三象限
B.這個(gè)函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形
C.當(dāng)x>0時(shí),y隨x的增大而增大
D.當(dāng)x<0時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,連接BD,先以D為圓心,DA為半徑作弧AC,再以D為圓心,DB為半徑作弧BE,且D、C、E三點(diǎn)共線,則圖中兩個(gè)陰影部分的面積之和是( )
A. π
B. +1
C.π
D.π+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函雙y= (m≠0)的陽象交于點(diǎn)c(n,3),與x軸、y軸分別交于點(diǎn)A、B,過點(diǎn)C作CM⊥x軸,垂足為M,若tan∠CAM= ,OA=2.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點(diǎn)D是反比例函數(shù)圖象在第三象限部分上的一點(diǎn),且到x軸的距離是3,連接AD、BD,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了解學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對部分學(xué)生進(jìn)行了跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.制成以下兩幅不完整的統(tǒng)計(jì)圖,
請你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)李老師一共調(diào)查了多少名同學(xué)?
(2)C類女生有名,D類男生有名,將下面條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,李老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)前,“校園ipad現(xiàn)象已經(jīng)受到社會(huì)的廣泛關(guān)注,某教學(xué)興趣小組對”“是否贊成中學(xué)生帶手機(jī)進(jìn)校園”的問題進(jìn)行了社會(huì)調(diào)查.小文將調(diào)查數(shù)據(jù)作出如下不完整的整理: 頻數(shù)分布表
看法 | 頻數(shù) | 頻率 |
贊成 | 5 | |
無所謂 | 0.1 | |
反對 | 40 | 0.8 |
(1)請求出共調(diào)查了多少人;并把小文整理的圖表補(bǔ)充完整;
(2)小麗要將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計(jì)圖,則扇形圖中“贊成”的圓心角是多少度?
(3)若該校有3000名學(xué)生,請您估計(jì)該校持“反對”態(tài)度的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,過對角線BD上一點(diǎn)P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,則SAEPH= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙M的圓心M(﹣1,2),⊙M經(jīng)過坐標(biāo)原點(diǎn)O,與y軸交于點(diǎn)A,經(jīng)過點(diǎn)A的一條直線l解析式為:y=﹣ x+4與x軸交于點(diǎn)B,以M為頂點(diǎn)的拋物線經(jīng)過x軸上點(diǎn)D(2,0)和點(diǎn)C(﹣4,0).
(1)求拋物線的解析式;
(2)求證:直線l是⊙M的切線;
(3)點(diǎn)P為拋物線上一動(dòng)點(diǎn),且PE與直線l垂直,垂足為E,PF∥y軸,交直線l于點(diǎn)F,是否存在這樣的點(diǎn)P,使△PEF的面積最小?若存在,請求出此時(shí)點(diǎn)P的坐標(biāo)及△PEF面積的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com