【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
<a<
⑤b>c.
其中含所有正確結(jié)論的選項(xiàng)是(  )

A.①③
B.①③④
C.②④⑤
D.①③④⑤

【答案】D
【解析】解:①∵函數(shù)開口方向向上,
∴a>0;
∵對(duì)稱軸在原點(diǎn)左側(cè)
∴ab異號(hào),
∵拋物線與y軸交點(diǎn)在y軸負(fù)半軸,
∴c<0,
∴abc>0,
故①正確;
②∵圖象與x軸交于點(diǎn)A(﹣1,0),對(duì)稱軸為直線x=﹣1,
∴圖象與x軸的另一個(gè)交點(diǎn)為(3,0),
∴當(dāng)x=2時(shí),y<0,
∴4a+2b+c<0,
故②錯(cuò)誤;
③∵圖象與x軸交于點(diǎn)A(﹣1,0),
∴當(dāng)x=﹣1時(shí),y=(﹣1)2a+b×(﹣1)+c=0,
∴a﹣b+c=0,即a=b﹣c,c=b﹣a,
∵對(duì)稱軸為直線x=1
=1,即b=﹣2a,
∴c=b﹣a=(﹣2a)﹣a=﹣3a,
∴4ac﹣b2=4a(﹣3a)﹣(﹣2a)2=﹣16a2<0
∵8a>0
∴4ac﹣b2<8a
故③正確
④∵圖象與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間,
∴﹣2<c<﹣1
∴﹣2<﹣3a<﹣1,
>a> ;
故④正確
⑤∵a>0,
∴b﹣c>0,即b>c;
故⑤正確;
故選:D.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是不倒翁的正視圖,不倒翁的圓形臉恰好與帽子邊沿PA、PB分別相切于點(diǎn)A、B,不倒翁的鼻尖正好是圓心O,若∠OAB=25°,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形紙片ABCD的邊長(zhǎng)為2,翻折∠B、∠D,使兩個(gè)直角的頂點(diǎn)重合于對(duì)角線BD上一點(diǎn)P、EF、GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當(dāng)x=1時(shí),點(diǎn)P是正方形ABCD的中心;
②當(dāng)x= 時(shí),EF+GH>AC;
③當(dāng)0<x<2時(shí),六邊形AEFCHG面積的最大值是3;
④當(dāng)0<x<2時(shí),六邊形AEFCHG周長(zhǎng)的值不變.
其中正確的選項(xiàng)是( )

A.①③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結(jié)論有( )個(gè).
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)F在ABCD的對(duì)角線AC上,過點(diǎn)F、B分別作AB、AC的平行線相交于點(diǎn)E,連接BF,∠ABF=∠FBC+∠FCB.
(1)求證:四邊形ABEF是菱形;
(2)若BE=5,AD=8,sin∠CBE= ,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校校園內(nèi)有一個(gè)大正方形花壇,如圖甲所示,它由四個(gè)邊長(zhǎng)為3米的小正方形組成,且每個(gè)小正方形的種植方案相同.其中的一個(gè)小正方形ABCD如圖乙所示,DG=1米,AE=AF=x米,在五邊形EFBCG區(qū)域上種植花卉,則大正方形花壇種植花卉的面積y與x的函數(shù)圖象大致是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx的圖象過點(diǎn)A(﹣1,3),頂點(diǎn)B的橫坐標(biāo)為1.

(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)點(diǎn)P在該二次函數(shù)的圖象上,點(diǎn)Q在x軸上,若以A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)如圖3,一次函數(shù)y=kx(k>0)的圖象與該二次函數(shù)的圖象交于O、C兩點(diǎn),點(diǎn)T為該二次函數(shù)圖象上位于直線OC下方的動(dòng)點(diǎn),過點(diǎn)T作直線TM⊥OC,垂足為點(diǎn)M,且M在線段OC上(不與O、C重合),過點(diǎn)T作直線TN∥y軸交OC于點(diǎn)N.若在點(diǎn)T運(yùn)動(dòng)的過程中, 為常數(shù),試確定k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形OABC的邊長(zhǎng)為4,對(duì)角線相交于點(diǎn)P,拋物線L經(jīng)過O、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫出O、P、A三點(diǎn)坐標(biāo);
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一段筆直的公路AC長(zhǎng)20千米,途中有一處休息點(diǎn)B,AB長(zhǎng)15千米,甲、乙兩名長(zhǎng)跑愛好者同時(shí)從點(diǎn)A出發(fā),甲以15千米/時(shí)的速度勻速跑至點(diǎn)B,原地休息半小時(shí)后,再以10千米/時(shí)的速度勻速跑至終點(diǎn)C;乙以12千米/時(shí)的速度勻速跑至終點(diǎn)C,下列選項(xiàng)中,能正確反映甲、乙兩人出發(fā)后2小時(shí)內(nèi)運(yùn)動(dòng)路程y(千米)與時(shí)間x(小時(shí))函數(shù)關(guān)系的圖象是( 。
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案