【題目】一段筆直的公路AC長20千米,途中有一處休息點B,AB長15千米,甲、乙兩名長跑愛好者同時從點A出發(fā),甲以15千米/時的速度勻速跑至點B,原地休息半小時后,再以10千米/時的速度勻速跑至終點C;乙以12千米/時的速度勻速跑至終點C,下列選項中,能正確反映甲、乙兩人出發(fā)后2小時內(nèi)運動路程y(千米)與時間x(小時)函數(shù)關(guān)系的圖象是( 。
A.
B.
C.
D.

【答案】A
【解析】解;由題意,甲走了1小時到了B地,在B地休息了半個小時,2小時正好走到C地,乙走了 小時到了C地,在C地休息了 小時.
由此可知正確的圖象是A.
故選A.
分別求出甲乙兩人到達C地的時間,再結(jié)合已知條件即可解決問題.本題考查函數(shù)圖象、路程.速度、時間之間的關(guān)系,解題的關(guān)鍵是理解題意求出兩人到達C地的時間,屬于中考?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
<a<
⑤b>c.
其中含所有正確結(jié)論的選項是( 。

A.①③
B.①③④
C.②④⑤
D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (x>0)的圖象交于A,B兩點,與x軸、y軸分別交于C,D兩點,連結(jié)OA,OB,過A作AE⊥x軸于點E,交OB于點F,設(shè)點A的橫坐標(biāo)為m.

(1)b=(用含m的代數(shù)式表示);
(2)若SOAF+S四邊形EFBC=4,則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標(biāo);
(3)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖反映的過程是:小強從家去菜地澆水,又去玉米地除草,然后回家.如果菜地和玉米地的距離為a千米,小強在玉米地除草比在菜地澆水多用的時間為b分鐘,則a,b的值分別為( )

A.1.1,8
B.0.9,3
C.1.1,12
D.0.9,8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于不等式組 下列說法正確的是( 。
A.此不等式組無解
B.此不等式組有7個整數(shù)解
C.此不等式組的負(fù)整數(shù)解是﹣3,﹣2,﹣1
D.此不等式組的解集是﹣ <x≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】表為小潔打算在某電信公司購買一支MAT手機與搭配一個門號的兩種方案.此公司每個月收取通話費與月租費的方式如下:若通話費超過月租費,只收通話費;若通話費不超過月租費,只收月租費.若小潔每個月的通話費均為x元,x為400到600之間的整數(shù),則在不考慮其他費用并使用兩年的情況下,x至少為多少才會使得選擇乙方案的總花費比甲方案便宜?(  )

甲方案

乙方案

門號的月租費(元)

400

600

MAT手機價格(元)

15000

13000

注意事項:以上方案兩年內(nèi)不可變更月租費


A.500
B.516
C.517
D.600

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|x﹣a|,a∈R.
(1)當(dāng)a=1時,求不等式f(x)+|2x﹣5|≥6的解集;
(2)若函數(shù)g(x)=f(x)﹣|x﹣3|的值域為A,且[﹣1,2]A,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若存在正實數(shù)m,使得關(guān)于x的方程x+a(2x+2m﹣4ex)[ln(x+m)﹣lnx]=0成立,其中e為自然對數(shù)的底數(shù),則實數(shù)a的取值范圍是(
A.(﹣∞,0)
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案