【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點(diǎn)P,過點(diǎn)B的直線交OP的延長線于點(diǎn)C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若OA=5,OP=3,求CB的長;
(3)設(shè)△AOP的面積是S1,△BCP的面積是S2,且.若⊙O的半徑為4,BP=,求tan∠CBP.
【答案】(1)見解析;(2)2
【解析】
(1)連接OB,由OP⊥OA,得∠A+∠APO=90°;由CP=CB,得∠CBP=∠CPB;再由OA=OB,得∠A=∠OBA,而∠CPB=∠APO,整理變形可得∠OBC=90°,即BC是⊙O的切線;
(2)設(shè)BC=x,則PC=x,在Rt△OBC中,由勾股定理可得關(guān)于x的方程
52+x2=(x+3)2,解方程即可求出CB的長;
(3)作CD⊥BP于D,由PC=PB,得PD=BD=PB=,易證△AOP∽△PCD,則由,可得,即,由此可求CD的長,再在Rt△BCD中,按照正切定義求出tan∠CBP即可.
(1)證明:連接OB,如圖,
∵OP⊥OA,
∴∠AOP=90°,
∴∠A+∠APO=90°,
∵CP=CB,
∴∠CBP=∠CPB,
而∠CPB=∠APO,
∴∠APO=∠CBP,
∵OA=OB,
∴∠A=∠OBA,
∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,
∴OB⊥BC,
∴BC是⊙O的切線;
(2)解:設(shè)BC=x,則PC=x,
在Rt△OBC中,OB=OA=5,OC=CP+OP=x+3,
∵OB2+BC2=OC2,
∴52+x2=(x+3)2,
解得x=,
即BC的長為;
(3)解:如圖,作CD⊥BP于D,
∵PC=PB,
∴PD=BD=PB=,
∵∠PDC=∠AOP=90°,∠APO=∠CPD,
∴△AOP∽△PCD,
∵,
∴,
∴,
∵OA=4,
∴CD=,
∴tan∠CBP==2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明做“用頻率估計(jì)概率”的試驗(yàn)時(shí),根據(jù)統(tǒng)計(jì)結(jié)果,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的試驗(yàn)最有可能的是( )
A. 任意買一張電影票,座位號是2的倍數(shù)的概率
B. 一副去掉大小王的撲克牌,洗勻后,從中任抽一張牌的花色是紅桃
C. 拋一個質(zhì)地均勻的正方體骰子,落下后朝上的面點(diǎn)數(shù)是3
D. 一個不透明的袋子中有4個白球、1個黑球,它們除了顏色外都相同,從中抽到黑球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹落實(shí)市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:
車型 | 目的地 | |
A村(元/輛) | B村(元/輛) | |
大貨車 | ||
800 | 900 | |
小貨車 | 400 | 600 |
(1)求這15輛車中大小貨車各多少輛?
(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.
(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在平面直角坐標(biāo)系中,已知拋物線 y=ax2+bx﹣5 與 x 軸交于 A(﹣1,0),B(5, 0)兩點(diǎn),與 y 軸交于點(diǎn) C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn) D 是 y 軸上的一點(diǎn),且以 B,C,D 為頂點(diǎn)的三角形與△ABC 相似,求點(diǎn) D 的坐標(biāo);
(3)如圖 2,CE∥x 軸與拋物線相交于點(diǎn) E,點(diǎn) H 是直線 CE 下方拋物線上的動點(diǎn),過點(diǎn) H且與 y 軸平行的直線與 BC,CE 分別相交于點(diǎn) F,G,試探究當(dāng)點(diǎn) H 運(yùn)動到何處時(shí),四邊形CHEF 的面積最大,求點(diǎn) H 的坐標(biāo)及最大面積;
(4)若點(diǎn) K 為拋物線的頂點(diǎn),點(diǎn) M(4,m)是該拋物線上的一點(diǎn),在 x 軸,y 軸上分別找點(diǎn) P,Q,使四邊形 PQKM 的周長最小,求出點(diǎn) P,Q 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以半圓中的一條弦BC(非直徑)為對稱軸將弧BC折疊后與直徑AB交于點(diǎn)D,若=,且AB=10,則CB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,2)請解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出A1的坐標(biāo).
(2)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2,并寫出A2的坐標(biāo).
(3)畫出△A2B2C2關(guān)于原點(diǎn)O成中心對稱的△A3B3C3,并寫出A3的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:體質(zhì)測試成績達(dá)到90.0分及以上的為優(yōu)秀;達(dá)到80.0分至89.9分的為良好;達(dá)到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級學(xué)生體質(zhì)健康狀況,從該校九年級學(xué)生中隨機(jī)抽取了10%的學(xué)生進(jìn)行體質(zhì)測試,測試結(jié)果如下面的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖所示。
各等級學(xué)生平均分統(tǒng)計(jì)表
等級 | 優(yōu)秀 | 良好 | 及格 | 不及格 |
平均分 | 92.1 | 85.0 | 69.2 | 41.3 |
各等級學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖
(1)扇形統(tǒng)計(jì)圖中“不及格”所占的百分比是 ;
(2)計(jì)算所抽取的學(xué)生的測試成績的平均分;
(3)若所抽取的學(xué)生中所有不及格等級學(xué)生的總分恰好等于某一個良好等級學(xué)生的分?jǐn)?shù),請估計(jì)該九年級學(xué)生中約有多少人達(dá)到優(yōu)秀等級。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,△ABC中,BA=BC,D是平面內(nèi)不與A、B、C重合的任意一點(diǎn),∠ABC=∠DBE,BD=BE.
(1)求證:△ABD≌△CBE;
(2)如圖2,當(dāng)點(diǎn)D是△ABC的外接圓圓心時(shí),請判斷四邊形BDCE的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A,B兩個頂點(diǎn)在x軸的上方,點(diǎn)C的坐標(biāo)是(-1,0).以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,記所得的像是△A′B′C.設(shè)點(diǎn)B的對應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是( )
A. - B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com