【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地. 如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系式;折線BCD表示轎車離甲地距離y(千米)x(小時)之間的函數(shù)關(guān)系.

下幾種說法:

①貨車的速度為60千米/小時;

②轎車與貨車相遇時,貨車恰好從甲地出發(fā)了3. 9小時;

③若轎車到達乙地后,馬上沿原路以CD段速度返回,則轎車從乙地出發(fā)小時再次與貨車相遇;

其中正確的個數(shù)是_________. (填寫序號)

【答案】①②③

【解析】

①根據(jù)函數(shù)的圖象即可直接求解;②求得直線OADC的解析式,求得交點坐標(biāo)即可.③設(shè)轎車從乙地出發(fā)x小時再次與貨車相遇,根據(jù)題意列出方程解方程即可轎車與貨車再次相遇的時間.

由圖象可知:貨車是勻速行駛,速度=300÷5=60千米/小時,故①正確;
設(shè)線段DC的解析式是y=kx+b,
根據(jù)題意得:

解得:,

則線段DC的解析式是:y=110x-195(2.5≤x≤4.5),
設(shè)OA的解析式是:y=mx,
根據(jù)題意得:5m=300,
解得:m=60,
則函數(shù)解析式是:y=60x,
根據(jù)題意得:

解得:,

則轎車與貨車相遇時,貨車恰好從甲地出發(fā)了3.9小時,故②正確;

設(shè)轎車從乙地出發(fā)x小時再次與貨車相遇,
∵V貨車=60千米/時,CDV轎車=(千米/時),
∴110x+60(x+4.5)=300,
解得x=(小時),故③正確.

故答案是:①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x2﹣(m﹣2)x+m的圖象過點(﹣1,15),設(shè)其圖象與x軸交于點A,B(A在B的左側(cè)),點C在圖象上,且SABC=1,求:
(1)求m;
(2)求點A,點B的坐標(biāo);
(3)求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y=y1﹣y2 , y1與x2成正比例,y2與x﹣1成反比例,當(dāng)x=﹣1時,y=3;當(dāng)x=2時,y=﹣3.
(1)求y與x之間的函數(shù)關(guān)系;
(2)當(dāng)x= 時,求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(

A. 已知a,b,c是三角形的三邊,則a2+b2=c2

B. 在直角三角形中,兩邊的平方和等于第三邊的平方

C. RtABC中,∠,所以a2+b2=c2

D. RtABC中,∠,所以a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,底面積為30cm2的空圓柱形容器內(nèi)水平放置著由兩個實心圓柱組成的“幾何體”,現(xiàn)向容器內(nèi)勻速注水,注滿為止,在注水過程中,水面高度h(cm)與注水時間t(s)之間的關(guān)系如圖②所示.
請根據(jù)圖中提供的信息,解答下列問題:
(1)圓柱形容器的高為cm,勻速注水的水流速度為cm3/s;
(2)若“幾何體”的下方圓柱的底面積為15cm2 , 求“幾何體”上方圓柱的高和底面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地,先是一段平路,然后是一段上坡路,小明騎車從甲地出發(fā),到達乙地后立即原路返回甲地,途中休息了一段時間,假設(shè)小明騎車在平路、上坡、下坡時分別保持勻速前進.已知小明騎車上坡的速度比在平路上的速度每小時少5km,下坡的速度比在平路上的速度每小時多5km.設(shè)小明出發(fā)x h后,到達離甲地y km的地方,圖中的折線OABCDE表示y與x之間的函數(shù)關(guān)系.
(1)小明騎車在平路上的速度為km/h;他途中休息了h;
(2)求線段AB、BC所表示的y與x之間的函數(shù)關(guān)系式;
(3)如果小明兩次經(jīng)過途中某一地點的時間間隔為0.15h,那么該地點離甲地多遠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】具備下列條件的三角形中,不是直角三角形的是(

A. ∠A+∠B=∠C B. ∠B=∠C=∠A

C. ∠A=90°-∠B D. ∠A-∠B=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,已知AB=AC,DAC上的一點,CD=9,BC=15,BD=12.

(1)證明:BCD是直角三角形.

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=ax2+bx+c如圖所示,下列四個結(jié)論: ①abc<0;②b﹣2a<0;③a﹣b+c<0;④b2﹣4ac>0.
其中正確結(jié)論的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案