【題目】已知一拋物線與x軸的交點(diǎn)是A(﹣2,0),B(1,0),且經(jīng)過點(diǎn)C(2,8).
(1)求該拋物線的解析式.
(2)求該拋物線的頂點(diǎn)坐標(biāo).
(3)直接寫出當(dāng)y>8時(shí),x的取值范圍.
【答案】(1)y=2x2+2x﹣4;(2)(﹣,﹣);(3)當(dāng)y>8時(shí),x的取值范圍是x<﹣3或x>2
【解析】試題分析:(1)設(shè)交點(diǎn)式y(tǒng)=a(x+2)(x-1),然后把C點(diǎn)坐標(biāo)代入求出a的值即可得到拋物線解析式;
(2)把(1)中的解析式配成頂點(diǎn)式即可得到拋物線頂點(diǎn)坐標(biāo);
(3)先求出點(diǎn)C(2,8)關(guān)于對(duì)稱軸x=-的對(duì)稱點(diǎn)為(-3,8),再根據(jù)二次函數(shù)的性質(zhì)即可求解.
試題解析:
(1)折拋物線解析式為y=a(x+2)(x﹣1),
把C(2,8)代入得a41=8,解得a=2,
所以拋物線解析式為y=2(x+2)(x﹣1),
即y=2x2+2x﹣4;
(2)y=2x2+2x﹣4=2(x+)2﹣,
所以拋物線的頂點(diǎn)坐標(biāo)為(﹣,﹣);
(3)∵y=2x2+2x﹣4=2(x+)2﹣,
∴對(duì)稱軸是直線x=﹣a=2>0開口向上,
∴點(diǎn)C(2,8)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)為(﹣3,8),
∴當(dāng)y>8時(shí),x的取值范圍是x<﹣3或x>2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知□ABCD的對(duì)角線AC、BD交于O,且∠1=∠2.
(1)求證:□ABCD是菱形;
(2)F為AD上一點(diǎn),連結(jié)BF交AC于E,且AE=AF.求證:AO=(AF+AB).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,放入6個(gè)形狀和大小都相同的小長(zhǎng)方形,已知小長(zhǎng)方形的長(zhǎng)為a,寬為b,且a>b.
(1)用含a、b的代數(shù)式表示長(zhǎng)方形ABCD的長(zhǎng)AD、寬AB;
(2)用含a、b的代數(shù)式表示陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為CD上一點(diǎn),F為BC延長(zhǎng)線上一點(diǎn),CE=CF.
(1)△DCF可以看作是△BCE繞點(diǎn)C旋轉(zhuǎn)某個(gè)角度得到的嗎?
(2)若∠CEB=60°,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角板中的兩個(gè)直角頂點(diǎn)重合在一起,即按如圖所示的方式疊放在一起,其中∠A=60°,∠B=30,∠D=45°.
(1)若∠BCD=45°,求∠ACE的度數(shù).
(2)若∠ACE=150°,求∠BCD的度數(shù).
(3)由(1)、(2)猜想∠ACE與∠BCD存在什么樣的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,E為AD中點(diǎn),CE延長(zhǎng)線交BA延長(zhǎng)線于點(diǎn)F.
(1)求證:CD=AF;
(2)若BC=2CD,求證:∠F=∠BCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點(diǎn)A、點(diǎn)B,與X軸交于點(diǎn)C,其中點(diǎn)A(﹣1,3)和點(diǎn)B(﹣3,n).
(1)填空:m= ,n= .
(2)求一次函數(shù)的解析式和△AOB的面積.
(3)根據(jù)圖象回答:當(dāng)x為何值時(shí),kx+b≥(請(qǐng)直接寫出答案) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:四邊形AFCE是平行四邊形;
(2)填空:①當(dāng)t為 s時(shí),四邊形ACFE是菱形;②當(dāng)t為 s時(shí),△ACE的面積是△ACF的面積的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角墻角AOB(OA⊥OB,且OA、OB長(zhǎng)度不限)中,要砌20m長(zhǎng)的墻,與直角墻角AOB圍成地面為矩形的儲(chǔ)倉,且地面矩形AOBC的面積為96m2.
(1)求地面矩形AOBC的長(zhǎng);
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價(jià)分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲(chǔ)倉的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com