【題目】如圖,已知點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且a、b滿足|a+3|+b﹣22=0

1)求A、B兩點(diǎn)的對(duì)應(yīng)的數(shù)ab;

2)點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x+1=x8的解.

①求線段BC的長(zhǎng);

②在數(shù)軸上是否存在點(diǎn)P,使PA+PB=BC?求出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說(shuō)明理由.

【答案】1)點(diǎn)A表示的數(shù)是﹣3,點(diǎn)B表示的數(shù)是2;(2①線段BC的長(zhǎng)為8;②點(diǎn)P對(duì)應(yīng)的數(shù)是3.5或﹣4.5

【解析】試題分析:1)根據(jù)|a+3|+b-22=0,可以求得a、b的值,從而可以求得點(diǎn)AB表示的數(shù);

2根據(jù)2x+1=x-8可以求得x的值,從而可以得到點(diǎn)C表示的數(shù),從而可以得到線段BC的長(zhǎng);

解:(1|a+3|+b﹣22=0,

a+3=0,b﹣2=0,

解得,a=﹣3,b=2,

即點(diǎn)A表示的數(shù)是﹣3,點(diǎn)B表示的數(shù)是2

22x+1=x﹣8

解得x=﹣6,

BC=2﹣﹣6=8

即線段BC的長(zhǎng)為8;

②存在點(diǎn)P,使PA+PB=BC理由如下:

設(shè)點(diǎn)P的表示的數(shù)為m,

|m﹣﹣3|+|m﹣2|=8,

|m+3|+|m﹣2|=8,

當(dāng)m2時(shí),解得 m=3.5,

當(dāng)﹣3m2時(shí),無(wú)解

當(dāng)x﹣3時(shí),解得m=﹣4.5,

即點(diǎn)P對(duì)應(yīng)的數(shù)是3.5或﹣4.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號(hào)召,某社區(qū)決定購(gòu)置一批共享單車,經(jīng)市場(chǎng)調(diào)查知,購(gòu)買(mǎi)3量男式單車與4輛女式單車費(fèi)用相同,購(gòu)買(mǎi)5輛男式單車與4輛女式單車共需16000元.

(1)求男式單車和女式單車的單價(jià);

(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購(gòu)置兩種單車的費(fèi)用不超過(guò)50000元,該社區(qū)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,AC=6,BD=8.動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿著B(niǎo)﹣A﹣D在菱形ABCD的邊上運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)D停止.點(diǎn)F是點(diǎn)E關(guān)于BD的對(duì)稱點(diǎn),EF交BD于點(diǎn)P,若BP=x,△OEF的面積為y,則y與x之間的函數(shù)圖象大致為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若m23=26 , 則m等于(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)了解,個(gè)體服裝銷售要高出進(jìn)價(jià)的20%方可盈利,一銷售老板以高出進(jìn)價(jià)的60%標(biāo)價(jià),如果一件服裝標(biāo)價(jià)240元,那么:

1)進(jìn)價(jià)是多少元?(2)最低售價(jià)多少元時(shí),銷售老板方可盈利?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題.

程大位,明代商人珠算發(fā)明家,被稱為珠算之父、卷尺之父.少年時(shí),讀書(shū)極為廣博,對(duì)數(shù)學(xué)頗感興趣,60歲時(shí)完成其杰作《直指算法統(tǒng)宗》簡(jiǎn)稱《算法統(tǒng)宗》).

在《算法統(tǒng)宗》里記載了一道趣題一百饅頭一百僧,大僧三個(gè)更無(wú)爭(zhēng),小僧三人分一個(gè),大小和尚各幾丁?意思是100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完.試問(wèn)大、小和尚各多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果只用一種正多邊形做平面密鋪,而且在每一個(gè)正多邊形的每一個(gè)頂點(diǎn)周圍都有6個(gè)正多邊形,則該正多邊形的每個(gè)內(nèi)角度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題:
(1) +|1﹣ |﹣π0+
(2)( + )× ﹣(4 ﹣3 )÷2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點(diǎn),過(guò)點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,AEDC,垂足為E,F(xiàn)是AE與O的交點(diǎn),AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案