【題目】如圖,已知線段AB=10,AC=BD=2,點(diǎn)P是CD上一動(dòng)點(diǎn),分別以AP、PB為邊向上、向下作正方形APEF和PHKB,設(shè)正方形對(duì)角線的交點(diǎn)分別為O1、O2 , 當(dāng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D時(shí),線段O1O2中點(diǎn)G的運(yùn)動(dòng)路徑的長(zhǎng)是 .
【答案】3
【解析】解:如圖所示:當(dāng)P移動(dòng)到C點(diǎn)以及D點(diǎn)時(shí),得出G點(diǎn)移動(dòng)路線是直線,
利用正方形的性質(zhì)即線段O1O2中點(diǎn)G的運(yùn)動(dòng)路徑的長(zhǎng)就是O2O″的長(zhǎng),
∵線段AB=10,AC=BD=2,當(dāng)P與C重合時(shí),
以AP、PB為邊向上、向下作正方形APEF和PHKB,
∴AP=2,BP=8,
則O1P= ,O2P=4 ,
∴O2P=O2B=4 ,
當(dāng)P′與D重合,則P′B=2,則AP′=8,
∴O′P′=4 ,O″P′= ,
∴H′O″=BO″= ,
∴O2O″=4 ﹣ =3 .
故答案為:3 .
根據(jù)正方形的性質(zhì)以及勾股定理即可得出正方形對(duì)角線的長(zhǎng),進(jìn)而得出線段O1O2中點(diǎn)G的運(yùn)動(dòng)路徑的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)做一道數(shù)學(xué)題,已知兩個(gè)多項(xiàng)式A、B,B=3x2y-5xy+x+7,試求A+B,這位同學(xué)把A+B看成A-B,結(jié)果求出的答案為6x2y+12xy-2x-9.
(1)請(qǐng)你替這位同學(xué)求出的正確答案;
(2)當(dāng)x取任意數(shù)值,A-3B的值是一個(gè)定值,求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的弦AB垂直半徑OC于點(diǎn)D,∠CBA=30°,OC=3 cm,則弦AB的長(zhǎng)為( )
A.9cm
B.3 cm
C.
cm
D.
cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在Rt△ABC,∠ACB=90°,分別以AB、BC為一邊向外作正方形ABFG、BCED,連結(jié)AD、CF,AD與CF交于點(diǎn)M.
(1)求證:△ABD≌△FBC;
(2)如圖(2),已知AD=6,求四邊形AFDC的面積;
(3)在△ABC中,設(shè)BC=a,AC=b,AB=c,當(dāng)∠ACB≠90°時(shí),c2≠a2+b2 . 在任意△ABC中,c2=a2+b2+k.就a=3,b=2的情形,探究k的取值范圍(只需寫出你得到的結(jié)論即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,過(guò)點(diǎn)D作DE⊥AD交AB于E,以AE為直徑作⊙O.
(1)求證:點(diǎn)D在⊙O上;
(2)求證:BC是⊙O的切線;
(3)若AC=6,BC=8,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,若動(dòng)點(diǎn)P在拋物線y=ax2上,⊙P恒過(guò)點(diǎn)F(0,n),且與直線y=﹣n始終保持相切,則n=(用含a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB>BC,按以下步驟作圖:以A為圓心,小于AD的長(zhǎng)為半徑畫弧,分別交AB、CD于E、F;再分別以E、F為圓心,大于 EF的長(zhǎng)半徑畫弧,兩弧交于點(diǎn)G;作射線AG交CD于點(diǎn)H.則下列結(jié)論:①AG平分∠DAB,②CH= DH,③△ADH是等腰三角形,④S△ADH= S四邊形ABCH .
其中正確的有( )
A.①②③
B.①③④
C.②④
D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車在剎車后行駛的距離s(單位:米)與時(shí)間t(單位:秒)之間的關(guān)系得部分?jǐn)?shù)據(jù)如下表:
時(shí)間t(秒) | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | … |
行駛距離s(米) | 0 | 2.8 | 5.2 | 7.2 | 8.8 | 10 | 10.8 | … |
假設(shè)這種變化規(guī)律一直延續(xù)到汽車停止.
(1)根據(jù)這些數(shù)據(jù)在給出的坐標(biāo)系中畫出相應(yīng)的點(diǎn);
(2)選擇適當(dāng)?shù)暮瘮?shù)表示s與t之間的關(guān)系,求出相應(yīng)的函數(shù)解析式;
(3)①剎車后汽車行駛了多長(zhǎng)距離才停止? ②當(dāng)t分別為t1 , t2(t1<t2)時(shí),對(duì)應(yīng)s的值分別為s1 , s2 , 請(qǐng)比較 與 的大小,并解釋比較結(jié)果的實(shí)際意義.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com