【題目】小明和小麗想利用摸球游戲來決定誰(shuí)去參加學(xué)校舉辦的歌詠比賽,游戲規(guī)則是:在一個(gè)不透明的袋子里裝有除數(shù)字以外其他均相同的4個(gè)小球,上面分別標(biāo)有數(shù)字1、2、3、4.一人先從袋中隨機(jī)摸出一個(gè)小球,另一人再?gòu)拇惺O碌?/span>3個(gè)小球中隨機(jī)摸出一個(gè)小球.若摸出的兩個(gè)小球上的數(shù)字和奇數(shù),則小明去參賽;否則小麗去參賽.
(1)用樹狀圖或列表法求出小明參賽的概率;
(2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說明理由.
【答案】(1);(2)不公平.
【解析】
(1)先根據(jù)題意畫出樹狀圖,求出所有可能結(jié)果,再求出兩個(gè)小球上的數(shù)字和為奇數(shù)的結(jié)果,即可求出求出小明獲勝的概率;
(2)根據(jù)概率公式分別求出小明獲勝的概率和小亮獲勝的概率,即可判斷出這個(gè)游戲是否公平.
(1)根據(jù)題意可列樹狀圖如下:
從表或樹狀圖可以看出所有可能結(jié)果共有12種,且每種結(jié)果發(fā)生的可能性相同,符合條件的結(jié)果有8種,
∴(和為奇數(shù));
(2)不公平,理由如下:
∵小明參賽的概率是(和為奇數(shù)),小麗參賽的概率是(和為偶數(shù)),
∵,
∴不公平.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,AB=AC=3,在△ABC內(nèi)作第一個(gè)內(nèi)接正方形DEFG;然后取GF的中點(diǎn)P,連接PD、PE,在△PDE內(nèi)作第二個(gè)內(nèi)接正方形HIKJ;再取線段KJ的中點(diǎn)Q,在△QHI內(nèi)作第三個(gè)內(nèi)接正方形…依次進(jìn)行下去,則第2014個(gè)內(nèi)接正方形的邊長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn)F,過點(diǎn)E作直線EP與CD的延長(zhǎng)線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點(diǎn),連接BO并延長(zhǎng)交函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接AC,若△ABC的面積為8.則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)均為1的正方形網(wǎng)格紙上有和,頂點(diǎn)A、B,C,D、E、F均在格點(diǎn)上,如果是由繞著某點(diǎn)O旋轉(zhuǎn)得到的,點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)請(qǐng)按要求完成以下操作或運(yùn)算:
在圖上找到點(diǎn)O的位置不寫作法,但要標(biāo)出字母,并寫出點(diǎn)O的坐標(biāo);
求點(diǎn)B繞著點(diǎn)O順時(shí)針旋轉(zhuǎn)到點(diǎn)E所經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B以每秒1cm的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以每秒2cm的速度移動(dòng)P、Q兩點(diǎn)在分別到達(dá)B、C兩點(diǎn)后就停止移動(dòng),設(shè)兩點(diǎn)移動(dòng)的時(shí)間為t秒,回答下列問題:
(1)如圖1,當(dāng)t為幾秒時(shí),△PBQ的面積等于5cm2?
(2)如圖2,當(dāng)t=秒時(shí),試判斷△DPQ的形狀,并說明理由;
(3)如圖3,以Q為圓心,PQ為半徑作⊙Q.
①在運(yùn)動(dòng)過程中,是否存在這樣的t值,使⊙Q正好與四邊形DPQC的一邊(或邊所在的直線)相切?若存在,求出t值;若不存在,請(qǐng)說明理由;
②若⊙Q與四邊形DPQC有三個(gè)公共點(diǎn),請(qǐng)直接寫出t的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com