【題目】如圖,在平面直角坐標系中,正方形的邊長為,頂點分別在軸、軸的正半軸,拋物線經(jīng)過兩點,點為拋物線的頂點,連接.

(1)求此拋物線的解析式;

(2)直接寫出四邊形的面積.

【答案】;

【解析】

1)由正方形的性質可求得B、C的坐標,代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;

2)把拋物線解析式化為頂點式可求得D點坐標,再由S四邊形ABDCSABCSBCD可求得四邊形ABDC的面積.

解:(1)∵正方形OABC的邊長為2,

OCBCABOA2,

C0,2),B2,2),

∵拋物線經(jīng)過B,C兩點,

,解得,

∴拋物線解析式為;

2)∵,

D1),

DBC的距離為2,

S四邊形ABDCSABCSBCD×2×2×2×

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程(m-1)x2-x-2=0,

(1)若x=-1是方程的一個根,求m的值及另一個根;

(2)當m為何值時方程有兩個不同的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于 x 的函數(shù) y=(m﹣1)x2+2x+m 圖象與坐標軸只有 2 個交點,則m=_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關注,據(jù)統(tǒng)計:今年720日豬肉價格比今年年初上漲了60%,某市民今年720日在某超市購買1千克豬肉花了80元錢.

1)問:今年年初豬肉的價格為每千克多少元?

2)某超市將進貨價為每千克65元的豬肉,按720日價格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬內(nèi)每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應該下降多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)農(nóng)業(yè)農(nóng)村部新聞部辦公室20181015日消息,江寧省發(fā)現(xiàn)疑似非洲豬瘟疫情,此次豬瘟疫情發(fā)病急,蔓延速度快.當政府和企業(yè)迅速進行了豬瘟疫情排查和處置,在疫情排查過程中,某農(nóng)場第一天發(fā)現(xiàn)3頭生豬發(fā)病,兩天后發(fā)現(xiàn)共有192頭生豬發(fā)病,

(1)求每頭發(fā)病生豬平均每天傳染多少頭生豬?

(2)若疫情得不到有效控制,3天后生豬發(fā)病頭數(shù)會超過1500頭嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,中,,動點出發(fā),以每秒個單位長度的速度向終點運動,過點于點,過點的平行線,與過點且與垂直的直線交于點,設點的運動時間為()

1)用含的代數(shù)式表示線段的長;

2)求當點落在邊上時t的值;

3)設重合部分圖形的面積為(平方單位),求與的函數(shù)關系式;

4)連結,若將沿它自身的某邊翻折,翻折前后的兩個三角形形成菱形,直接寫出此時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】城市中“打車難”一直是人們關注的一個社會熱點問題.近幾年來,“互聯(lián)網(wǎng)+”戰(zhàn)略與傳統(tǒng)出租車行業(yè)深度融合,“優(yōu)步”、“滴滴出行”等打車軟件就是其中典型的應用,名為“數(shù)據(jù)包絡分析”(簡稱DEA)的一種效率評價方法,可以很好地優(yōu)化出租車資源配置,為了解出租車資源的“供需匹配”,北京、上海等城市對每天24個時段的DEA值進行調(diào)查,調(diào)查發(fā)現(xiàn),DEA值越大,說明匹配度越好.在某一段時間內(nèi),北京的DEAy與時刻t的關系近似滿足函數(shù)關系(a,b,c是常數(shù),且≠0),如圖記錄了3個時刻的數(shù)據(jù),根據(jù)函數(shù)模型和所給數(shù)據(jù),當“供需匹配”程度最好時,最接近的時刻t是(

A. 4.8 B. 5 C. 5.2 D. 5.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)某學校智慧方園數(shù)學社團遇到這樣一個題目:

如圖1,在ABC中,點O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

經(jīng)過社團成員討論發(fā)現(xiàn),過點BBDAC,交AO的延長線于點D,通過構造ABD就可以解決問題(如圖2).

請回答:∠ADB=   °,AB=   

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形ABCD中,對角線ACBD相交于點O,ACAD,AO=ABC=ACB=75°,BO:OD=1:3,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象過點、頂點的橫坐標為.

(1)求這個二次函數(shù)的解析式;

(2)點在該一次函數(shù)的圖象上,點軸上,若以為頂點的四邊形是平行四邊形,求點的坐標。

查看答案和解析>>

同步練習冊答案