【題目】已知:如圖,在RtABC中,∠C90°,AC8cmBC6cm,點PB出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點QA出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設(shè)運動的時間為ts)(0t4),解答下列問題:

1)當(dāng)t為何值時,PQBC

2)設(shè)△AQP的面積為ycm2),求yt之間的函數(shù)關(guān)系式;

3)是否存在某一時刻t,使線段PQ恰好把RtACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;

4)如圖,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,那么是否存在某一時刻t,使四邊形PQPC為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.

【答案】(1);(2)y=﹣t2+6t.(3)不存在t的值使線段PQ恰好把Rt△ACB的周長和面積同時平分;(4)ts

【解析】

1)只要證明△APQ∽△ABC,可得=,構(gòu)建方程即可解決問題;(2)過點PPEACE,則有△APE∽△ABC,由相似三角形的性質(zhì)構(gòu)建二次函數(shù)即可解決問題;(3)由題意可求RtACB的周長和面積,當(dāng)線段PQ恰好把RtACB的周長平分,可得AP+AQ×2412,可求t的值,代入yt之間的函數(shù)關(guān)系式,可求出y12,則不存在t的值使線段PQ恰好把RtACB的周長和面積同時平分;(4)連接P'PAC于點O,由△APO∽△ABC,可得=,即=,可得AO,由菱形的性質(zhì)可得OQOC,構(gòu)建方程即可解決問題.

解:(1)在RtABC中,AB 10cm),

∵點PB出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點QA出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;

BPtAQ2t,則AP10t,

PQBC,

∴△APQ∽△ABC

=

=

t

∴當(dāng)ts時,PQBC

2)如圖,過點PPEAC于點E,

PEAC,BCAC,

PEBC,

∴△APE∽△ABC

=,

=,

PE6t

y×2t×6t)=﹣t2+6t

3)∵∠C90°,AC8cm,BC6cm,AC10cm,

∴△ABC的周長為24cm,ABC的面積為24cm2

∵線段PQ恰好把RtACB的周長平分,

AP+AQ×2412

10t+2t12,

t2

當(dāng)t2時,y=﹣×4+12≠×24

∴不存在t的值使線段PQ恰好把RtACB的周長和面積同時平分.

4)如圖,連接P'PAC于點O,

∵四邊形PQP′C為菱形

POAC,OQOC,

POBC,

∴△APO∽△ABC

=,,

=,,

AO ,

OQOC

AOAQACAO,

2t8,

t,

∴當(dāng)ts時,四邊形PQP′C為菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD120°,CEAD,且CEBC,連接BE交對角線AC于點F,則∠EFC_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家出發(fā)到公園晨練,在公園鍛煉一段時間后按原路返回,同時小明爸爸從公園按小明的路線返回家中,如圖是兩人離家的距離y(米)與小明出發(fā)的時間x(分)之間的函數(shù)圖象,則下列結(jié)論中不正確的是( 。

A. 公園離小明家1600

B. 小明出發(fā)分鐘后與爸爸第一次相遇

C. 小明在公園停留的時間為5分鐘

D. 小明與爸爸第二次相遇時,離家的距離是960

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m,橋洞與水面

的最大距離是5m

1經(jīng)過討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案如下圖

你選擇的方案是_____填方案一,方案二或方案三),B點坐標(biāo)是______求出你所選方案中的拋物線的表達式;

2因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩幢建筑物ABCD,ABBD,CDBD,AB=15m,CD=20mABCD之間有一景觀池,小雙在A點測得池中噴泉處E點的俯角為42°,在C點測得E點的俯角為45°,點B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】河上有一座橋孔為拋物線形的拱橋(如圖 ),水面寬 時,水面離橋孔頂部 ,因降暴雨水面上升

(1)建立適當(dāng)?shù)淖鴺?biāo)系,并求暴雨后水面的寬;(結(jié)果保留根號)

(2)一艘裝滿物資的小船,露出水面的部分高為 ,寬 (橫斷面如圖 所示),暴雨后這艘船能從這座拱橋下通過嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2) 請根據(jù)圖象直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).

(1)請畫出△ABC繞O點逆時針旋轉(zhuǎn)90°得到△A1B1C1,請畫出△A1B1C1

(2)在x軸上求作一點P,使△PA1C1的周長最小,并直接寫出P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,則BDC的度數(shù)為( 。

A. α B. α C. 90﹣α D. 90﹣α

查看答案和解析>>

同步練習(xí)冊答案