【題目】某鐵路橋長1000米.現(xiàn)有一列火車從橋上勻速通過.測(cè)得火車從開始上橋到完全通過橋共用了1分鐘(即從車頭進(jìn)入橋頭到車尾離開橋尾),整個(gè)火車完全在橋上的時(shí)間為40秒.

1)如果設(shè)這列火車的長度為x米,填寫下表(不需要化簡(jiǎn)):

火車行駛過程

時(shí)間(秒)

路程(米)

速度(米/秒)

完全通過橋

60

整列車在橋上

40

2)求這列火車的長度.

【答案】11000+x,,1000-x,;(2200

【解析】

1)根據(jù)題意列出代數(shù)式即可.

2)通過理解題意可知本題存在兩個(gè)等量關(guān)系,即整列火車過橋通過的路程=橋長+車長,整列火車在橋上通過的路程=橋長-車長,根據(jù)這兩個(gè)等量關(guān)系可列出方程求解.

解:(1

火車行駛過程

路程(米)

速度(米/秒)

完全通過橋

整列車在橋上

2)解:設(shè)這列火車的長度為

依題意得

解得

答:這列火車的長度為米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AMABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合)DEABAC于點(diǎn)F,CEAM,連結(jié)AE.

(1)如圖1,當(dāng)點(diǎn)DM重合時(shí),求證:四邊形ABDE是平行四邊形;

(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.

(3)如圖3,延長BDAC于點(diǎn)H,BHAC,BH=AM

①求∠CAM的度數(shù);

②當(dāng)FH=, DM=4時(shí),DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程m為常數(shù))

1)求證:不論m為何值,該方程總有實(shí)數(shù)根;

2)若該方程有一個(gè)根是,求m的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】杰瑞公司成立之初投資1500萬元購買新生產(chǎn)線生產(chǎn)新產(chǎn)品,此外,生產(chǎn)每件該產(chǎn)品還需要成本60元.按規(guī)定,該產(chǎn)品售價(jià)不得低于100/件且不得超過180/件,該產(chǎn)品銷售量y(萬件)與產(chǎn)品售價(jià)x(元)之間的函數(shù)關(guān)系如圖所示.

(1)y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;

(2)第一年公司是盈利還是虧損?求出當(dāng)盈利最大或者虧損最小時(shí)的產(chǎn)品售價(jià);

(3)(2)的前提下,即在第一年盈利最大或者虧損最小時(shí),第二年公司重新確定產(chǎn)品售價(jià),能否使兩年共盈利達(dá)1340萬元,若能,求出第二年產(chǎn)品售價(jià);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,0是坐標(biāo)原點(diǎn),點(diǎn)A坐標(biāo)為(2, 0),點(diǎn)B坐標(biāo)為(0, b) (b>0), 點(diǎn)P是直線AB上位于第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),過點(diǎn)PPC垂直于x軸于點(diǎn)C,記點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)為Q.

(1)當(dāng)b=1時(shí):①求直線AB相應(yīng)的函數(shù)表達(dá)式:②若,求點(diǎn)P的坐標(biāo):

(2)設(shè)點(diǎn)P的橫坐標(biāo)為a,是否同時(shí)存在a、b,使得是等腰直角三角形?若存在,求出所有滿足條件的a、b的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形中,,現(xiàn)將長方形向上平移,再向左平移后到長方形的位置(的對(duì)應(yīng)點(diǎn)為,其它類似)

當(dāng)時(shí),請(qǐng)畫出平移后的長方形,并求出長方形與長方形的重疊部分的面積.

當(dāng)滿足什么條件時(shí),長方形與長方形有重疊部分(邊與邊疊合不算在內(nèi)),請(qǐng)用的代數(shù)式表示重疊部分的面積.

在平移的過程中,總會(huì)形成一個(gè)六邊形,試用來表示六邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墊球是排球運(yùn)動(dòng)的一項(xiàng)重要技術(shù).下列圖表中的數(shù)據(jù)分別是甲、乙、內(nèi)三個(gè)運(yùn)動(dòng)員十次墊球測(cè)試的成績,規(guī)則為每次測(cè)試連續(xù)墊球10個(gè),每墊球到位1個(gè)記1分.

測(cè)試序號(hào)

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

7

5

8

7

8

7

1)寫出運(yùn)動(dòng)員甲測(cè)試成績的眾數(shù)和中位數(shù);

2)試從平均數(shù)和方差兩個(gè)角度綜合分析,若在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?(參考數(shù)據(jù):三人成績的方差分別為S20.8、S20.4、s20.81

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:數(shù)軸上有、兩點(diǎn),分別對(duì)應(yīng)的數(shù)為,,已知互為相反數(shù),點(diǎn)為數(shù)軸上一動(dòng)點(diǎn),對(duì)應(yīng)為

(1)若點(diǎn)到點(diǎn)和點(diǎn)的距離相等,求點(diǎn)對(duì)應(yīng)的數(shù);

(2)數(shù)軸上是否存在點(diǎn),使點(diǎn)到點(diǎn)和點(diǎn)的距離之和為5?若存在,請(qǐng)求出的值,若不存在,請(qǐng)說明理由;

(3)當(dāng)點(diǎn)以每分鐘1個(gè)單位長度的速度從點(diǎn)向左運(yùn)動(dòng),點(diǎn)以每分鐘5個(gè)單位長度向左運(yùn)動(dòng),點(diǎn)以每分鐘20個(gè)單位長度的速度向左運(yùn)動(dòng),問幾分鐘時(shí)點(diǎn)到點(diǎn)、點(diǎn)的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,O為對(duì)角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交ADBCE,F兩點(diǎn),連結(jié)BE,DF

(1)求證:DOE≌△BOF

(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案