【題目】如圖,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中線,AE是∠BAD的角平分線,DF∥AB交AE的延長線于點F,則DF的長為 .
【答案】5.5.
【解析】試題分析:根據等腰三角形三線合一的性質可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根據平行線的性質求出∠F=∠BAE=30°,從而得到∠DAE=∠F,再根據等角對等邊求出AD=DF,然后求出∠B=30°,根據直角三角形30°角所對的直角邊等于斜邊的一半解答.
解:∵AB=AC,AD是△ABC的中線,
∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,
∵AE是∠BAD的角平分線,
∴∠DAE=∠EAB=∠BAD=×60°=30°,
∵DF∥AB,
∴∠F=∠BAE=30°,
∴∠DAE=∠F=30°,
∴AD=DF,
∵∠B=90°﹣60°=30°,
∴AD=AB=×9=4.5,
∴DF=4.5.
故答案為:5.5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y= x﹣3交于A、B兩點,其中點A在y軸上,點B坐標為(﹣4,﹣5),點P為y軸左側的拋物線上一動點,過點P作PC⊥x軸于點C,交AB于點D.
(1)求拋物線的解析式;
(2)以O,A,P,D為頂點的平行四邊形是否存在?如存在,求點P的坐標;若不存在,說明理由.
(3)當點P運動到直線AB下方某一處時,過點P作PM⊥AB,垂足為M,連接PA使△PAM為等腰直角三角形,請直接寫出此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點,交y軸于點C,且B(1,0),C(0,3),將△BOC繞點O按逆時針方向旋轉90°,C點恰好與A重合.
(1)求該二次函數(shù)的解析式;
(2)若點P為線段AB上的任一動點,過點P作PE∥AC,交BC于點E,連結CP,求△PCE面積S的最大值;
(3)設拋物線的頂點為M,Q為它的圖象上的任一動點,若△OMQ為以OM為底的等腰三角形,求Q點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為( 。
A. 115° B. 120° C. 125° D. 130°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于A(2,﹣1),B( ,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求證:AD平分∠BAC;
(2)直接寫出AB+AC與AE之間的等量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,
將若干個點擺成三角形圖案,每條邊(包括兩個端點)有n(n是正整數(shù)且n>1)個點,相應的圖案中總的點數(shù)記為an , 則 + +…+ =( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生對“共享單車”的使用情況,隨機抽取部分學生進行問卷調查,將這次調查的結果繪制了以下兩幅不完整的統(tǒng)計圖.
根據以上信息解答下列問題:
(1)本次抽樣調查了 學生,“經常使用”部分對應扇形的圓心角度數(shù)為 ;
(2)把條形統(tǒng)計圖補充完整;
(3)已知全校共3000名學生,請估計經常使用“共享單車”的學生大約有多少名?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com