【題目】如圖,在△ABC中,AB=AC=11,∠BAC=120°,AD△ABC的中線,AE∠BAD的角平分線,DF∥ABAE的延長線于點F,則DF的長為

【答案】5.5

【解析】試題分析:根據等腰三角形三線合一的性質可得AD⊥BC∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根據平行線的性質求出∠F=∠BAE=30°,從而得到∠DAE=∠F,再根據等角對等邊求出AD=DF,然后求出∠B=30°,根據直角三角形30°角所對的直角邊等于斜邊的一半解答.

解:∵AB=ACAD△ABC的中線,

∴AD⊥BC∠BAD=∠CAD=∠BAC=×120°=60°

∵AE∠BAD的角平分線,

∴∠DAE=∠EAB=∠BAD=×60°=30°

∵DF∥AB,

∴∠F=∠BAE=30°,

∴∠DAE=∠F=30°

∴AD=DF,

∵∠B=90°﹣60°=30°,

∴AD=AB=×9=4.5

∴DF=4.5

故答案為:5.5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與直線y= x﹣3交于A、B兩點,其中點A在y軸上,點B坐標為(﹣4,﹣5),點P為y軸左側的拋物線上一動點,過點P作PC⊥x軸于點C,交AB于點D.

(1)求拋物線的解析式;
(2)以O,A,P,D為頂點的平行四邊形是否存在?如存在,求點P的坐標;若不存在,說明理由.
(3)當點P運動到直線AB下方某一處時,過點P作PM⊥AB,垂足為M,連接PA使△PAM為等腰直角三角形,請直接寫出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點,交y軸于點C,且B(1,0),C(0,3),將△BOC繞點O按逆時針方向旋轉90°,C點恰好與A重合.

(1)求該二次函數(shù)的解析式;
(2)若點P為線段AB上的任一動點,過點P作PE∥AC,交BC于點E,連結CP,求△PCE面積S的最大值;
(3)設拋物線的頂點為M,Q為它的圖象上的任一動點,若△OMQ為以OM為底的等腰三角形,求Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由射線AB,BC,CD,DE,EA組成的平面圖形,則∠1+∠2+∠3+∠4+∠5=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為( 。

A. 115° B. 120° C. 125° D. 130°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于A(2,﹣1),B( ,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE⊥ABE,DF⊥ACF,若BD=CD、BE=CF.

(1)求證:AD平分∠BAC;

(2)直接寫出AB+ACAE之間的等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,

將若干個點擺成三角形圖案,每條邊(包括兩個端點)有n(n是正整數(shù)且n>1)個點,相應的圖案中總的點數(shù)記為an , 則 + +…+ =( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生對共享單車的使用情況,隨機抽取部分學生進行問卷調查,將這次調查的結果繪制了以下兩幅不完整的統(tǒng)計圖.

根據以上信息解答下列問題:

1)本次抽樣調查了 學生,經常使用部分對應扇形的圓心角度數(shù)為 ;

2)把條形統(tǒng)計圖補充完整;

3)已知全校共3000名學生,請估計經常使用共享單車的學生大約有多少名?

查看答案和解析>>

同步練習冊答案