【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于A(2,﹣1),B( ,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.

【答案】
(1)解:把A(2,﹣1)代入反比例解析式得:﹣1= ,即m=﹣2,

∴反比例解析式為y=﹣ ,

把B( ,n)代入反比例解析式得:n=﹣4,即B( ,﹣4),

把A與B坐標(biāo)代入y=kx+b中得: ,

解得:k=2,b=﹣5,

則一次函數(shù)解析式為y=2x﹣5;


(2)解:∵A(2,﹣1),B( ,﹣4),直線AB解析式為y=2x﹣5,

∵C(0,2),直線BC解析式為y=﹣12x+2,

將y=﹣1代入BC的解析式得x= ,則AD=2﹣ =

∵xC﹣xB=2﹣(﹣4)=6,

∴SABC= ×AD×(yC﹣yB)= × ×6=


【解析】(1)把A坐標(biāo)代入反比例解析式求出m的值,確定出反比例解析式,再將B坐標(biāo)代入求出n的值,確定出B坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)解析式求出k與b的值,即可確定出一次函數(shù)解析式;(2)利用兩點(diǎn)間的距離公式求出AB的長(zhǎng),利用點(diǎn)到直線的距離公式求出點(diǎn)C到直線AB的距離,即可確定出三角形ABC面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,廣宇購(gòu)物中心設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,并規(guī)定:顧客購(gòu)物滿20元以上就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一區(qū)域就可以獲得相應(yīng)的獎(jiǎng)品,下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).

轉(zhuǎn)動(dòng)轉(zhuǎn)盤的次數(shù)n

100

200

400

500

1000

落在“牙膏”區(qū)域的次數(shù)m

32

58

121

149

300

落在“牙膏”區(qū)域的頻率

0.3025

(1)計(jì)算并完成上面的表格;

(2)請(qǐng)估計(jì),當(dāng)n很大時(shí),頻率將會(huì)接近多少?

(3)假如你去轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,你獲得牙膏的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“你最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下兩個(gè)不完整的統(tǒng)計(jì)圖(如圖).

請(qǐng)根據(jù)上面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下4個(gè)問題:

(1)這次抽樣調(diào)查中,共調(diào)查了_____名學(xué)生.

(2)補(bǔ)全條形統(tǒng)計(jì)圖中的缺項(xiàng).

(3)在扇形統(tǒng)計(jì)圖中,選擇教師傳授的占_____%,選擇小組合作學(xué)習(xí)的占_____%.

(4)根據(jù)調(diào)查結(jié)果,估算該校1800名學(xué)生中大約有_____人選擇小組合作學(xué)習(xí)模式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2011貴州安順,10,3分)一只跳蚤在第一象限及x軸、y軸上跳動(dòng),在第一秒鐘,它從原點(diǎn)跳動(dòng)到(0,1),然后接著按圖中箭頭所示方向跳動(dòng)[(00)→(0,1) →(11) →1,0→…],且每秒跳動(dòng)一個(gè)單位,那么第35秒時(shí)跳蚤所在位置的坐標(biāo)是( )

A. (4,O) B. (5,0) C. (0,5) D. (5,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=11,∠BAC=120°,AD△ABC的中線,AE∠BAD的角平分線,DF∥ABAE的延長(zhǎng)線于點(diǎn)F,則DF的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=ACAD⊥BC,CE⊥AB,AE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx過(guò)A(4,0),B(1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過(guò)點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.

(1)求拋物線的表達(dá)式;
(2)直接寫出點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時(shí),求出點(diǎn)P的坐標(biāo);
(4)若點(diǎn)M在直線BH上運(yùn)動(dòng),點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)C、M、N為頂點(diǎn)的三角形為等腰直角三角形時(shí),請(qǐng)直接寫出此時(shí)△CMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出下列結(jié)論:①abc>0;②a﹣b+c<0;③2a+b﹣c<0;④4a+2b+c>0,⑤若點(diǎn)(﹣ ,y1)和( ,y2)在該圖象上,則y1>y2 . 其中正確的結(jié)論是(填入正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,且EH=EB.下列四個(gè)結(jié)論:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC是等腰直角三角形.你認(rèn)為正確的序號(hào)是( )

A. ①②③ B. ①③④ C. ②③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案