【題目】 如圖1,在平面直角坐標系中,第一象限內(nèi)長方形ABCD,AB∥y軸,點A是(1,1),點C(a,b),滿足.
(1)求長方形ABCD的面積;
(2)如圖2,長方形ABCD以每秒1個單位長度的速度向右平移,同時點E從原點O出發(fā),沿x軸以每秒2個單位長度的速度向右運動,設(shè)運動時間為t秒.
①當t=5時,求三角形OMC的面積;
②若AC∥ED,求t的值.
【答案】(1)8;(2)①4;②3
【解析】
(1)由已知得出a=5,b=3,求得C點坐標,結(jié)合圖象,能找出其它幾點的坐標,從而能得出長方形ABCD的面積;
(2)①拆分三角形,求出各個圖形的面積即可求得;
②過點A作AF∥CD,交x軸于點M,交DE的延長線于點F,根據(jù)平行四邊形的性質(zhì)可得出AF的長度,結(jié)合AM的長度可得出ME為△FAD的中位線,根據(jù)點M、A的運動速度可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.
解:(1)∵.
∴a-5=0,b-3=0,即a=5,b=3,
∵四邊形ABCD為長方形,
∴點B(1,3),點C(5,3),點D(5,1),
∴AB=3-1=2,BC=5-1=4,
長方形ABCD的面積為:AB×BC=2×4=8;
(2)①將t=5時,線段AC拿出來,放在圖3中,各字母如圖,
∵點A′(6,1),點C′(10,3),
∴OM=6,ON=10,A′M=1,C′N=3,MN=ON-OM=4,
∴三角形OA′C′的面積=ONC′N-OMA′M-(A′M+C′N)MN=15-3-8=4;
即三角形OMC的面積為4;
②過點A作AF∥CD,交x軸于點M,交DE的延長線于點F,
如圖4所示,
∵AF∥CD,AC∥DF,
∴四邊形AFDC為平行四邊形,
∴AF=CD=2.
∵AM=1,
∴ME為△FAD的中位線,
∴ME=AD=2,
即2t-(t+1)=2,
解得:t=3.
故若AC∥ED,t的值為3秒.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點從原點出發(fā)沿數(shù)軸向左運動,同時點從原點出發(fā)沿數(shù)軸向右運動,秒鐘后,兩點相距個單位長度,已知點的速度是點A的速度的倍.(速度單位:單位長度/秒)
(1)求出點點運動的速度.
(2)若、兩點從(1)中位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時原點恰好處在點點的正中間?
(3)若、兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點同時從點位置出發(fā)向點運動,當遇到點后,立即返回向點運動,遇到點又立即返回向點運動,如此往返,直到點追上點時,點一直以單位長度/秒的速度運動,那么點從開始運動到停止運動,行駛的路程是多少單位長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:分別與x軸、y軸交于A、B兩點,點C為x軸上任意一點,直線l2:經(jīng)過點C,且與直線l1交于點D,與y軸交于點E,連結(jié)AE.
(1)當點C的坐標為時,①求直線l2的函數(shù)表達式;②求證:AE平分;
(2)問:是否存在點C,使是以CE為一腰的等腰三角形?若存在,直接寫出點C的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲騎自行車從M地出發(fā)沿一條公路勻速前往N地,乙騎摩托車從N地出發(fā)沿同一條公路勻速前往M地,
已知乙比甲晚出發(fā)0.5小時且先到達目的地.設(shè)甲行駛的時間為t(h),甲乙兩人之間的路程為y(km),
y與t的函數(shù)關(guān)系如圖1所示,請解決以下問題:
(1)寫出圖1中點C表示的實際意義并求線段BC所在直線的函數(shù)表達式.
(2)①求點D的縱坐標.
②求M,N兩地之間的距離.
(3)設(shè)乙離M地的路程為S乙 (km),請直接寫出S甲 與時間t(h)的函數(shù)表達式,并在圖2所給的直角坐標系中畫出它的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,
(1)求證:四邊形ADCE為矩形;
(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育用品商場預測某品牌運動服能夠暢銷,就用32000元購進了一批這種運動服,上市后很快脫銷,商場又用68000元購進第二批這種運動服,所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元.
(1)該商場兩次共購進這種運動服多少套?
(2)如果這兩批運動服每套的售價相同,且全部售完后總利潤不低于20%,那么每套售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表.
請結(jié)合圖表完成下列各題:
(1)① 表中a的值為 ;
② 把頻數(shù)分布直方圖補充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)a a3a5
(2)(x6)2+(x3)4+x12
(3)
(4)(-3a2b3)(-2ab3c)3
(5)
(6)(x+2)(x-3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=8,點C和點D是⊙O上關(guān)于直線AB對稱的兩個點,連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點E,過點C作直線CG與線段AB的延長線相交于點F,與直線AD相交于點G,且∠GAF=∠GCE
(1)求證:直線CG為⊙O的切線;
(2)若點H為線段OB上一點,連接CH,滿足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com