【題目】1)計算:______ 2)計算: _________

3)計算:________ 4)計算:=________

5)計算:=__________ 6)計算____________

【答案】 -8 a6

【解析】

1)分母不變,把分子相加,然后約分即可;

2)底數(shù)不變,指數(shù)相加即可;

3)先根據(jù)乘方的意義變形,再根據(jù)同底數(shù)冪的除法法則計算;

4)根據(jù)冪的乘方法則計算;

5)根據(jù)負整數(shù)指數(shù)冪的意義計算;

6)先通分,再根據(jù)同分母分式的加減法法則計算.

1=;

22-2= ;

3-23=-8

4=a6;

5= =

6.

故答案為:(1;(2;(3-8;(4a6;(5;(6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在今年我市初中學業(yè)水平考試體育學科的女子800耐力測試中,某考點同時起跑的小瑩和小梅所跑的路程S(米)與所用時間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,下列說法正確的是( 。

A、小瑩的速度隨時間的增大而增大B、小梅的平均速度比小瑩的平均速度大

C、在起跑后180秒時,兩人相遇D、在起跑后50秒時,小梅在小瑩的前面

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形紙片ABCD中,∠B=D=90°,點E,F(xiàn)分別在邊BC,CD上,將AB,AD分別沿AE,AF折疊,點B,D恰好都和點G重合,∠EAF=45°.

(1)求證:四邊形ABCD是正方形;

(2)求證:三角形ECF的周長是四邊形ABCD周長的一半;

(3)若EC=FC=1,求AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知O是直線AB上一點,∠BOE=FOD=90°,OB平分∠COD

1)圖中與∠DOE互余的角是______________________

2)圖中是否有與∠DOE互補的角?如果有,直接寫出全部結(jié)果;如果沒有,說明理由。

3)如果∠EOD︰∠EOF=32,求∠AOC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段AB=(為常數(shù)),點C為直線AB上一點,點PQ分別在線段BC、AC上,且滿足CQ=2AQ,CP=2BP.

(1)如圖,當點C恰好在線段AB中點時,則PQ=_______(用含的代數(shù)式表示);

(2)若點C為直線AB上任一點,則PQ長度是否為常數(shù)?若是,請求出這個常數(shù);若不是,請說明理由;

(3)若點C在點A左側(cè),同時點P在線段AB上(不與端點重合),請判斷2AP+CQ-2PQ1的大小關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=10,AB=14,點EDC上一個動點,若將ADE沿AE折疊,當點D的對應點D′落在∠ABC的角平分線上時,則點D′AB的距離為( 。

A. 6 B. 68 C. 78 D. 67

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式能用完全平方公式分解的是(

A.a2+2ax+4x2B.-a2-4ax+4x2

C.-2x+1+4x2D.x4+4+4x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)若多項式2x38x2y+x+1與多項式﹣3x32mx2y+6x9的差的值與字母y的取值無關(guān),求m的值.

2)已知有理數(shù)a,bc在數(shù)軸上對應位置如圖所示,化簡:|a+b||b+c|+|a+c|

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王同學在學校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

月均用水量(單位:t)

頻數(shù)

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

(2)如果家庭月均用水量大于或等于4t且小于7t”為中等用水量家庭,請你估計總體小王所居住的小區(qū)中等用水量家庭大約有多少戶?

(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,請用列舉法(畫樹狀圖或列表)求抽取出的2個家庭來自不同范圍的概率.

查看答案和解析>>

同步練習冊答案