【題目】若x2﹣2x﹣1=2,則代數(shù)式2x2﹣4x的值為

【答案】6
【解析】解:∵x2﹣2x﹣1=2,即x2﹣2x=3, ∴原式=2(x2﹣2x)=6,
所以答案是:6
【考點精析】解答此題的關(guān)鍵在于理解代數(shù)式求值的相關(guān)知識,掌握求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時求不出其字母的值,需要利用技巧,“整體”代入.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知m是方程x2﹣x﹣2=0的一個根,則代數(shù)式m2﹣m+4的值等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),平面直角坐標系中,一次函數(shù)y=﹣x+1的圖象與y軸交于點A,點B是第二象限一次函數(shù)y=﹣x+1的圖象上一點,且SOAB=3,點C的坐標為(﹣2,﹣3).

(1)求A,B的坐標;
(2)如圖(1)若點D是線段BC上一點,且三角形ABD的面積是三角形ABC的一半,求△ABC的面積和點D的坐標;
(3)在(2)的條件下,如圖(2),將線段AC沿直線AB平移,點A的對應(yīng)點為A1 , 點C的對應(yīng)點為C1 , 連接A1D,C1D,當△A1C1D直角三角形時,求A1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC放在以O(shè)為原點的平面直角坐標系中,A(3,0),C(0,2),點E是AB的中點,點F在BC邊上,且CF=1.

(1)點E的坐標為 , 點F的坐標為;
(2)點E關(guān)于x軸的對稱點為E′,點F關(guān)于y軸的對稱點為F′,
①點E′的坐標為 , 點F′的坐標為;
②求直線E′F′的解析式;
(3)若M為x軸上的動點,N為y軸上的動點,當四邊形MNFE的周長最小時,求出點M,N的坐標,并求出周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=∠C,點E,F(xiàn)分別在邊AB,BC上,AE=DF=DC.

(1)若∠DFC=70°,則∠C的大小=(度),∠B的大小=(度);
(2)求證:四邊形AEFD是平行四邊形;
(3)若∠FDC=2∠EFB,則四邊形AEFD一定是“菱形、矩形、正方形”中的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若某商品的原價為100元,連續(xù)兩次漲價后的售價為144元,設(shè)兩次平增長率為x.則下面所列方程正確的是( )
A.100(1﹣x)2=144
B.100(1+x)2=144
C.100(1﹣2x)2=144
D.100(1﹣x)2=144

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某次試驗中,測得兩個變量mv之間的4組對應(yīng)數(shù)據(jù)如下表:

m

1

2

3

4

v

0.01

2.9

8.03

15.1

mv之間的關(guān)系最接近于下列各關(guān)系式中的( )

A. v2m1B. vm21C. v3m3D. vm1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+m分別交x軸,y軸于A,B兩點,已知點C(2,0).

(1)當直線AB經(jīng)過點C時,點O到直線AB的距離是 ;

(2)設(shè)點P為線段OB的中點,連結(jié)PA,PC,若CPA=ABO,則m的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個多邊形的內(nèi)角和是720°,這個多邊形的邊數(shù)是(
A.4
B.5
C.6
D.7

查看答案和解析>>

同步練習冊答案