【題目】已知:梯形ABCD中,AD//BC,AB⊥BC,AD=3,AB=6,DF⊥DC分別交射線AB、射線CB于點(diǎn)E、F.
(1)當(dāng)點(diǎn)E為邊AB的中點(diǎn)時(shí)(如圖1),求BC的長(zhǎng);
(2)當(dāng)點(diǎn)E在邊AB上時(shí)(如圖2),聯(lián)結(jié)CE,試問(wèn):∠DCE的大小是否確定?若確定,請(qǐng)求出∠DCE的正切值;若不確定,則設(shè)AE=x,∠DCE的正切值為y,請(qǐng)求出y關(guān)于x的函數(shù)解析式,并寫出定義域;
(3)當(dāng)△AEF的面積為3時(shí),求△DCE的面積.
【答案】(1)9;(2)∠DCE的大小確定,.(3)當(dāng)△AEF的面積為3時(shí),△DCE的面積為25或73.
【解析】
(1)根據(jù)AD//BC和 E為AB中點(diǎn),得出 AD= BF,DE= EF,再根據(jù)AD=3,AB=6,求出BF=3,再求出DF的值,最后求出CF即可;
(2)作CH⊥AD交AD的延長(zhǎng)線于點(diǎn)H,再得出△AED∽△HDC再根據(jù)AB⊥AD,CH⊥AD,AD//BC,得出CH =AB=6,然后得出∠DCE的正切值;
(3)當(dāng)點(diǎn)E在邊AB上,設(shè)AE=x,根據(jù)△AEF的面積為3得出x的值,再求出DE,DC的值,然后可以得出△DCE的面積;當(dāng)點(diǎn)E在邊AB延長(zhǎng)線上,設(shè)AE=y,根據(jù)△AEF的面積為3,得出,聯(lián)結(jié)CE,作CH⊥AD交AD的延長(zhǎng)線于點(diǎn)H,得出DC,DE的值即可.
解:(1)∵AD//BC,∴.∵E為AB中點(diǎn),∴AE=BE. ∴AD= BF,DE= EF.
∵AD=3,AB=6,∴BF=3,BE=3. ∴BF=BE.
∵AB⊥BC,∴∠F=45°且EF=.
∴DF=2EF=.
∵DF⊥DC,∠F=45°,∴CF=12.
∴BC= .
(2)∠DCE的大小確定,.
作CH⊥AD交AD的延長(zhǎng)線于點(diǎn)H,∴∠HCD+∠HDC=90°.
∵DF⊥DC,∴∠ADE+∠HDC=90°. ∴∠HCD=∠ADE.
又∵AB⊥AD,∴∠A=∠CHD. ∴△AED∽△HDC.
∴.
∵AB⊥AD,CH⊥AD,AD//BC,∴CH =AB=6.
∵AD=3,CH=6,∴.即.
(3)當(dāng)點(diǎn)E在邊AB上,設(shè)AE=x,
∵AD//BC,∴,即.∴.
∵△AEF的面積為3,∴.
∴.
∵AD=3,AB⊥AD,∴DE=5. ∵,∴DC=10.
∵DF⊥DC,∴.
當(dāng)點(diǎn)E在邊AB延長(zhǎng)線上,設(shè)AE=y,
∵AD//BC,∴,即.∴.
∵△AEF的面積為3,∴.∴.
∵AD=3,AB⊥AD,∴DE=.
聯(lián)結(jié)CE,作CH⊥AD交AD的延長(zhǎng)線于點(diǎn)H,同(1)可得.
∴DC=
∵DF⊥DC,∴.
綜上,當(dāng)△AEF的面積為3時(shí),△DCE的面積為25或73.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,模塊①由15個(gè)棱長(zhǎng)為1的小正方體構(gòu)成,模塊②-⑥均由4個(gè)棱長(zhǎng)為1的小正方體構(gòu)成.現(xiàn)在從模塊②-⑥中選出三個(gè)模塊放到模塊①上,與模塊①組成一個(gè)棱長(zhǎng)為的大正方體.下列四個(gè)方案中,符合上述要求的是( )
A. 模塊②,④,⑤ B. 模塊③,④,⑥ C. 模塊②,⑤,⑥ D. 模塊③,⑤,⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為指導(dǎo)某種應(yīng)季商品的生產(chǎn)和銷售,對(duì)三月份至七月份該商品的售價(jià)和成本進(jìn)行了調(diào)研,結(jié)果如下:一件商品的售價(jià)M(元)與時(shí)間t(月)的關(guān)系可用一條線段上的點(diǎn)來(lái)表示(如圖甲),一件商品的成本Q(元)與時(shí)間t(月)的關(guān)系可用一段拋物線上的點(diǎn)來(lái)表示,其中6月份成本最高(如圖乙).根據(jù)圖象提供的信息解答下面的問(wèn)題:
(1)一件商品在3月份出售時(shí)的利潤(rùn)是多少元?(利潤(rùn)=售價(jià)-成本)
(2)求出一件商品的成本Q(元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(3)你能求出3月份至7月份一件商品的利潤(rùn)W(元)與時(shí)間t(月)之間的函數(shù)關(guān)系式嗎?若該公司能在一個(gè)月內(nèi)售出此種商品30 000件,請(qǐng)你計(jì)算該公司在一個(gè)月內(nèi)最少獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是邊長(zhǎng)為4的等邊三角形,邊AB在射線OM上,且OA=6,點(diǎn)D是射線OM上的動(dòng)點(diǎn),當(dāng)點(diǎn)D不與點(diǎn)A重合時(shí),將△ACD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BCE,連接DE.
(1)如圖1,求證:△CDE是等邊三角形.
(2)設(shè)OD=t,
①當(dāng)6<t<10時(shí),△BDE的周長(zhǎng)是否存在最小值?若存在,求出△BDE周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
②求t為何值時(shí),△DEB是直角三角形(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車分別從相距480km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),并以各自的速度勻速行駛,途徑C地,甲車到達(dá)C地停留1小時(shí),因有事按原路原速返回A地.乙車從B地直達(dá)A地,兩車同時(shí)到達(dá)A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖,結(jié)合圖象信息解答下列問(wèn)題:
(1)乙車的速度是 千米/時(shí),t= 小時(shí);
(2)求甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)直接寫出乙車出發(fā)多長(zhǎng)時(shí)間兩車相距120千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角三角板放在平面直角坐標(biāo)系中,直角邊垂直軸,垂足為,已知,點(diǎn),,均在反比例函數(shù)的圖象上,分別作軸于,軸于,延長(zhǎng),交于點(diǎn),且點(diǎn)為的中點(diǎn).
求點(diǎn)的坐標(biāo);
求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:是的直徑,是弦,,延長(zhǎng)到點(diǎn),使得.
(1)求證:是的切線;
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,是邊上一條運(yùn)動(dòng)的線段(點(diǎn)不與點(diǎn)重合,點(diǎn)不與點(diǎn)重合),且,交于點(diǎn),交于點(diǎn),在從左至右的運(yùn)動(dòng)過(guò)程中,設(shè)BM=x,的面積減去的面積為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】成都市中心城區(qū)“小游園,微綠地”規(guī)劃已經(jīng)實(shí)施,武侯區(qū)某街道有一塊矩形空地進(jìn)入規(guī)劃試點(diǎn).如圖,已知該矩形空地長(zhǎng)為,寬為,按照規(guī)劃將預(yù)留總面積為的四個(gè)小矩形區(qū)域(陰影部分)種植花草,并在花草周圍修建三條橫向通道和三條縱向通道,各通道的寬度相等.
(1)求各通道的寬度;
(2)現(xiàn)有一工程隊(duì)承接了對(duì)這的區(qū)域(陰影部分)進(jìn)行種植花草的綠化任務(wù),該工程隊(duì)先按照原計(jì)劃進(jìn)行施工,在完成了的綠化任務(wù)后,將工作效率提高,結(jié)果提前天完成任務(wù),求該工程隊(duì)原計(jì)劃每天完成多少平方米的綠化任務(wù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com