如圖,已知AD是△ABC的中線.
(1)畫出以點D為對稱中心與△ABD成中心對稱的三角形.
(2)畫出以點B為對稱中心與(1)所作三角形成中心對稱的三角形.
(3)問題(2)所作三角形可以看作由△ABD作怎樣的變換得到的?
分析:(1)延長AD到E,使AD=DE連接CE,則△ECD為所求作的三角形.
(2)根據(jù)對應(yīng)點連線經(jīng)過對稱中心,且對稱中心平分對應(yīng)點連線,可得出各點的對稱點,順次連接即可得出答案.
(3)結(jié)合所畫圖形即可得到答案.
解答:解:(1)如圖所示,△ECD是所求的三角形:
(2)如圖所示,△E'C'D'是所求的三角形:
(3)△E'C'D'是由△ABD沿DB方向平移得到的.
點評:本題考查了旋轉(zhuǎn)作圖的知識,需要同學(xué)們熟練掌握中心對稱的定義,中心對稱的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知AD是△ABC的角平分線,CE⊥AD,垂足O,CE交AB于E,則下列命題:①AE=AC,②CO=OE,③∠AEO=∠ACO,④∠B=∠ECB.其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知AD是△ABC的角平分線,在不添加任何輔助線的前提下,要使△AED≌△AFD,需添加一個條件是:
AE=AF或∠EDA=∠FDA
,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AD是等腰三角形ABC底邊上的高,AD與底邊BC的比是2:3,等腰三角形的面積是12cm,求等腰三角形ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的中線,∠ADC=45°,把△ABC沿AD對折,點C落在點E的位置,連接BE,若BC=6cm.
(1)求BE的長;
(2)當(dāng)AD=4cm時,求四邊形BDAE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的角平分線,DE∥AB交AC于點E.那么△ADE是等腰三角形嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案