【題目】一艘在南北航線上的測(cè)量船,于A點(diǎn)處測(cè)得海島B在點(diǎn)A的南偏東30°方向,繼續(xù)向南航行30海里到達(dá)C點(diǎn)時(shí),測(cè)得海島BC點(diǎn)的北偏東15°方向,那么海島B離此航線的最近距離是(  )(結(jié)果保留小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):≈1.732,≈1.414)

A. 4.64海里 B. 5.49海里 C. 6.12海里 D. 6.21海里

【答案】B

【解析】

根據(jù)題意畫(huà)出圖如圖所示:作BD⊥AC,取BE=CE,根據(jù)三角形內(nèi)角和和等腰三角形的性質(zhì)得出BA=BE,AD=DE,設(shè)BD=x,Rt△ABD中,根據(jù)勾股定理得AD=DE=x,AB=BE=CE=2x,由AC=AD+DE+EC=2x+2x=30,解之即可得出答案.

根據(jù)題意畫(huà)出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
∵∠CAB=30°
∴BA=BE,AD=DE,
設(shè)BD=x,
Rt△ABD中,
∴AD=DE=x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2x+2x=30,
∴x==≈5.49,
故答案選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,拋物線經(jīng)過(guò)點(diǎn)

、的值;

如圖,點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),過(guò)點(diǎn)的直線交軸于點(diǎn),交拋物線于另一點(diǎn).若,求的值;

如圖,在的條件下,點(diǎn)軸上一點(diǎn),連分別交拋物線于點(diǎn)、,探究的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC 中,∠A=30°,∠B=90°,AC=8,點(diǎn) D 在邊 AB, BD=,點(diǎn) P 是△ABC 邊上的一個(gè)動(dòng)點(diǎn),若 AP=2PD 時(shí),則 PD的長(zhǎng)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形的所有內(nèi)角與它的一個(gè)外角之和是2018°,求這個(gè)外角的度數(shù)和它的邊數(shù)

【答案】38° ; 邊數(shù)13

【解析】試題分析根據(jù)多邊形的內(nèi)角和公式(n-2)180°可知,多邊形的內(nèi)角和是180°的倍數(shù),然后列式求解即可.

試題解析:設(shè)多邊形的邊數(shù)是n,加的外角為α,則

(n-2)180°+α=2018°,

α=2378°-180°n,又0<α<180°,

0<2378°-180°n<180°,

解得: n

n為正整數(shù),

可得n=13,

此時(shí)α=38°滿足條件,

這個(gè)外角的度數(shù)是38°,它的13邊形

【點(diǎn)睛】本題考查了多邊形的內(nèi)角和公式,利用好多邊形的內(nèi)角和是180°的倍數(shù)是解題的關(guān)鍵.

型】解答
結(jié)束】
22

【題目】已知, (1) (2) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3過(guò)點(diǎn)A5,m)且與y軸交于點(diǎn)B,把點(diǎn)A向左平移2個(gè)單位,再向上平移4個(gè)單位,得到點(diǎn)C.過(guò)點(diǎn)C且與y2x平行的直線交y軸于點(diǎn)D

1)求直線CD的解析式;

2)直線ABCD交于點(diǎn)E,將直線CD沿EB方向平移,平移到經(jīng)過(guò)點(diǎn)B的位置結(jié)束,求直線CD在平移過(guò)程中與x軸交點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ΔABC、ΔCDE都是等邊三角形,AD、BE相交于點(diǎn)O,點(diǎn)M、點(diǎn)N分別是線段AD、BE的中點(diǎn).

1)證明: AD=BE.2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的個(gè)數(shù)為(  )

①三角形的三條高都在三角形內(nèi),且都相交于一點(diǎn)

②三角形的中線都是過(guò)三角形的某一個(gè)頂點(diǎn),且平分對(duì)邊的直線

③在ABC,,ABC是直角三角形

④一個(gè)三角形的兩邊長(zhǎng)分別是810,那么它的最短邊的取值范圍是2b18.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在邊長(zhǎng)為2的正三角形ABC中,EF、G分別為AB

AC、BC的中點(diǎn),點(diǎn)P為線段EF上一個(gè)動(dòng)點(diǎn),連接BP、GP,則△BPG的周長(zhǎng)的最小值是

_ ▲

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,AD⊥BD于點(diǎn)D,DE∥ACAB于點(diǎn)E,若AB=8,則DE=_______

查看答案和解析>>

同步練習(xí)冊(cè)答案