【題目】計(jì)算

(1)

(2)

(3)

(4)3x-7(x-1)=3-2(x+3)

【答案】(1) (2)(3) (4)x=5

【解析】

(1)將除法轉(zhuǎn)化為乘法,再逆用乘法分配律提取-,從而先計(jì)算括號(hào)內(nèi)的,再計(jì)算乘法即可得;

(2)先算乘方,再算乘除,最后算加法;

(3)先去括號(hào),再合并同類項(xiàng)即可;

(4)先去括號(hào),再移項(xiàng),合并同類項(xiàng),系數(shù)化為1即可解得.

(1)原式=×(-)-×-×

=×(-)-×-

=-×(++1)

=-×

=-;

(2)

=-16

=-16

=-16+

=

(3)

=4x2-5xy-y2-2x2+6xy-y2-y2

=2x2+xy-y2;

(4)3x-7(x-1)=3-2(x+3),

去括號(hào),得3x-7x+7=3-2x-6,

移項(xiàng),得3x-7x+2x=3-6-7,

合并同類項(xiàng)得,-2x=-10,

系數(shù)華為1,得x=5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E為矩形ABCDCD邊延長(zhǎng)線上一點(diǎn),BEADG , AFBEF , 圖中相似三角形的對(duì)數(shù)是( 。
A.5
B.7
C.8
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的盒子中放有四張分別寫(xiě)有數(shù)字1,2,3,4的紅色卡片和三張分別寫(xiě)有數(shù)字1,2,3的藍(lán)色卡片,卡片除顏色和數(shù)字外完全相同.
(1)從中任意抽取一張卡片,求該卡片上寫(xiě)有數(shù)字1的概率;
(2)將3張藍(lán)色卡片取出后放入另外一個(gè)不透明的盒子內(nèi),然后在兩個(gè)盒子內(nèi)各任意抽取一張卡片,以紅色卡片上的數(shù)字作為十位數(shù),藍(lán)色卡片上的數(shù)字作為個(gè)位數(shù)組成一個(gè)兩位數(shù),求這個(gè)兩位數(shù)大于22的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0)、B(0,4),對(duì)OAB連續(xù)作旋轉(zhuǎn)變換,依次得到1、2、3、4…,則2016的直角頂點(diǎn)的坐標(biāo)為 ( )

A. 8065 B. 8064 C. 8063 D. 8062

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2015年12月月歷.

(1)如圖,用一正方形框在表中任意框往4個(gè)數(shù),記左上角的一個(gè)數(shù)為x,則另三個(gè)數(shù)用含x的式子表示出來(lái),從小到大依次是 ,

(2)在表中框住四個(gè)數(shù)之和最小記為a1,和最大記為a2,則a1+a2=

(3)當(dāng)(1)中被框住的4個(gè)數(shù)之和等于76時(shí),x的值為多少?

(4)在(1)中能否框住這樣的4個(gè)數(shù),它們的和等于92?若能,則求出x的值;若不能,則說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的一條弦,且AB= .點(diǎn)C,E分別在⊙O上,且OC⊥AB于點(diǎn)D,∠E=30°,連接OA.
(1)求OA的長(zhǎng);
(2)若AF是⊙O的另一條弦,且點(diǎn)O到AF的距離為 ,直接寫(xiě)出∠BAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過(guò)點(diǎn)A(1,0),且當(dāng)x=0和x=5時(shí)所對(duì)應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣ +bx+c的圖象分別交于B,C兩點(diǎn),點(diǎn)B在第一象限.

(1)求二次函數(shù)y=﹣ +bx+c的表達(dá)式;
(2)連接AB,求AB的長(zhǎng);
(3)連接AC,M是線段AC的中點(diǎn),將點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.

如圖1,在∠AOB的內(nèi)部有一條射線OC把∠AOB分成兩個(gè)角,射線OM、ON分別平分∠AOC、BOC,試探究∠MON與∠AOB之間的數(shù)量關(guān)系,并說(shuō)明理由.

小敏與同桌小聰討論后,進(jìn)行了如下解答:

(1)特殊情況,探索結(jié)論:

①請(qǐng)你在下表中填上當(dāng)∠AOB60°、90°、120°時(shí)∠MON的大小:

AOB的度數(shù)

60°

90°

120°

MON的度數(shù)

   

   

   

②探索發(fā)現(xiàn):無(wú)論∠AOB的度數(shù)是多少,∠MON與∠AOB的數(shù)量關(guān)系是不變的,請(qǐng)你直接寫(xiě)出結(jié)論:

MON   AOB.

(2)特例啟發(fā),解答題目:

如圖2,如果∠AOB=α,請(qǐng)你求∠MON的大小(用α表示).

(3)拓展結(jié)論,設(shè)計(jì)新題:

如圖3,把一張報(bào)紙的一角斜折過(guò)去,使A點(diǎn)落在E點(diǎn)處,BC為折痕,BD是∠EBM的平分線,求∠CBD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案