【題目】如圖中的圖像(折線ABCDE)描述了一汽車在某一直線上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法:①汽車共行駛了120千米;②汽車在行駛途中停留了0.5小時(shí);③汽車在整個(gè)行駛過程中的平均速度為80.8千米/時(shí);④汽車自出發(fā)后3小時(shí)至4.5小時(shí)之間行駛的速度在逐漸減。萜囯x出發(fā)地64千米是在汽車出發(fā)后1.2小時(shí)時(shí)。其中正確的說法共有( )

A.1個(gè)     B.2個(gè)      C.3個(gè)      D.4個(gè)

【答案】A.

【解析】

試題分析:根據(jù)圖象對(duì)每條進(jìn)行分別判斷即可,行駛的最遠(yuǎn)距離是120千米,共行駛240千米,共用時(shí)間是4.5小時(shí).

行駛的最遠(yuǎn)距離是120千米,共行駛240千米,故此選項(xiàng)錯(cuò)誤;

根據(jù)圖象從1.5時(shí)到2時(shí),是停留時(shí)間,停留0.5小時(shí),故此選項(xiàng)正確;

汽車在整個(gè)行駛過程中的平均速度為千米/時(shí),故此選項(xiàng)錯(cuò)誤;

汽車自出發(fā)后3小時(shí)至4.5小時(shí)之間路程與時(shí)間成一次函數(shù)關(guān)系,因而速度不變.故此選項(xiàng)錯(cuò)誤;

⑤∵,因?yàn)槠嚮貋硗局幸灿须x出發(fā)地64千米的時(shí)候;故此選項(xiàng)錯(cuò)誤.

故正確的說法是:

故選A.

考點(diǎn): 函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:,OE平分,點(diǎn)A、BC分別是射線OM、OEON上的動(dòng)點(diǎn)、BC不與點(diǎn)O重合,連接AC交射線OE于點(diǎn)設(shè)

如圖1,若,則

的度數(shù)是______;

當(dāng)時(shí),______;當(dāng)時(shí),______.

如圖2,若,則是否存在這樣的x的值,使得中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下一個(gè)四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又余下一個(gè)四邊形,稱為第二 次操作;……依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準(zhǔn)菱形.如圖1,平行四邊形ABCD中,若AB=1,BC=2,則平行四 邊形ABCD為1階準(zhǔn)菱形.

(I)判斷與推理:

(i)鄰邊長(zhǎng)分別為2和3的平行四邊形是_________階準(zhǔn)菱形;

(ii)為了剪去一個(gè)菱形,進(jìn)行如下操作:如圖2,把平行四邊形ABCD沿BE折疊(點(diǎn)E在AD上),使點(diǎn)A落在BC邊上的點(diǎn)F,得到四邊形ABFE,請(qǐng)證明四邊形ABFE是菱形.

)操作與計(jì)算:

已知平行四邊形ABCD的鄰邊長(zhǎng)分別為l,a(a>1),且是3階準(zhǔn)菱形,請(qǐng)畫出平行四邊形ABCD及裁剪線的示意圖,并在圖形下方寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BD⊥AC,垂足為D,AB=AC=9,BC=6,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC內(nèi)接于⊙O,過點(diǎn)A作直線EF.
(1)如圖①,AB為直徑,要使EF為⊙O的切線,還需添加的條件是(只需寫出三種情況): ①;②;③
(2)如圖②,AB是非直徑的弦,∠CAE=∠B,求證:EF是⊙O的切線.
(3)如圖③,AB是非直徑的弦,∠CAE=∠ABC,EF還是⊙O的切線嗎?若是,請(qǐng)說明理由;若不是,請(qǐng)解釋原因.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣1,2),B(﹣2,0),C(﹣4,1),把三角形ABC向上平移1個(gè)單位長(zhǎng)度,向右平移5個(gè)單位長(zhǎng)度,可以得到三角形A′B′C′.

(Ⅰ)在圖中畫出△A′B′C′;

(Ⅱ)直接寫出點(diǎn)A′、B′、C′的坐標(biāo);

(Ⅲ)寫出A′C′AC之間的位置關(guān)系和大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3交x軸于A點(diǎn),交y軸于B點(diǎn),過A、B兩點(diǎn)的拋物線y=﹣x2+bx+c交x軸于另一點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn).

(1)求此拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線交x軸于點(diǎn)H,交直線AB于點(diǎn)F,作PG⊥AB于點(diǎn)G.求出△PFG的周長(zhǎng)最大值;
(3)在拋物線y=﹣x2+bx+c上是否存在除點(diǎn)D以外的點(diǎn)M,使得△ABM與△ABD的面積相等?若存在,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中AB∥CD,對(duì)角線AC,BD相交于O,點(diǎn)E,F(xiàn)分別為BD上兩點(diǎn),且BE=DF,∠AEF=∠CFB.

(1)求證:四邊形ABCD是平行四邊形;

(2)若AC=2OE,試判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在計(jì)算的過程中,三位同學(xué)給出了不同的方法:

甲同學(xué)的解法:原式=

乙同學(xué)的解法:原式==1;

丙同學(xué)的解法:原式=(x+3)(x﹣2)+2﹣x=x2+x﹣6+2﹣x=x2﹣4.

(1)請(qǐng)你判斷一下,   同學(xué)的解法從第一步開始就是錯(cuò)誤的,   同學(xué)的解法是完全正確的.

(2)乙同學(xué)說:我發(fā)現(xiàn)無論x取何值,計(jì)算的結(jié)果都是1”.請(qǐng)你評(píng)價(jià)一下乙同學(xué)的話是否合理,并簡(jiǎn)要說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案