△ABC中,∠ACB=90°,CD是斜邊AB上的高,AB=4cm,AC=cm,則AD=________ cm。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,在Rt△ABC中,∠ACB=90°,點D是斜邊AB上的一點,且CD=AC=3,AB=4,求cosB,sin∠ADC及cos
12
∠DCA
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,∠ACB=90°,BA的垂直平分線交CB邊于D,若AB=20,AC=10,則圖中等于30°的角的個數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,∠ACB=90°,AB=2BC,在直線BC或AC上取一點P,使得△PAB等腰三角形,則符合條件的點P共有
6
6
個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,⊙O為△ABC的外接圓,AC=6cm,BC=8cm,P為BC的中點.動點Q從點P出發(fā),沿射線PC方向以2cm/s的速度運動,以P為圓心,PQ長為半徑作圓.設(shè)點Q運動的時間為t s.若⊙P與⊙O相切,則t的值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分線,過A、C、D三點的圓與斜邊AB交于點E,連接DE.
(1)判斷線段AC與AE是否相等,并說明理由;
(2)求過A、C、D三點的圓的直徑.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹