【題目】如圖,△ABC中,AB=AC,BE平分∠ABC,CD平分∠ACB,則下圖中共有幾對全等三角形( 。
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】
首先證明△ACD≌△ABE可得AD=AE,DC=BE,根據等式的性質可得AB﹣AD=AC﹣AE,即BD=CE;再證明△EBC≌△DCB,△EOC≌△DOB即可.
△ACD≌△ABE,△EBC≌△DCB,△EOC≌△DOB,
∵AB=AC,
∴∠ACB=∠ABC,
∵BE平分∠ABC,CD平分∠ACB,
∴∠ACD=∠ABE,
在△ADC和△AEB中,
,
∴△ACD≌△ABE(ASA);
∴AD=AE,DC=BE,
∴AB﹣AD=AC﹣AE,
即BD=CE,
在△EBC和△DCB中,
,
∴△EBC≌△DCB(SSS),
在△EOB和△DOC中,
,
∴△EOB≌△DOC(AAS).
故選B.
科目:初中數學 來源: 題型:
【題目】小亮家與姥姥家相距24千米,小亮8:00從家出發(fā),騎自行車去姥姥家,媽媽8:30從家出發(fā),乘車沿相同路線去姥姥家.小亮和媽媽的行進路程(千米)與時間(時)的圖象如圖所示.根據圖象得到下列結論,其中錯誤的是( )
A. 小亮騎自行車的平均速度是12千米/時
B. 媽媽比小亮提前0.5小時到達姥姥家
C. 媽媽在距家12千米處追上小亮
D. 9:30媽媽追上小亮
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC與BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意選取兩個作為條件,“四邊形ABCD是平行四邊形”為結論構成命題。
(1)以①②作為條件構成的命題是真命題嗎?若是,請證明;若不是,請舉出反例;
(2)寫出按題意構成的所有命題中的假命題,并舉出反例加以說明.(命題請寫成“如果…,那么….”的形式)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD平移后得到四邊形A′B′C′D′
觀察圖形后完成下列問題:
(1)四邊形ABCD先向 平移 個格,再向 平移 個格后得到四邊形A′B′C′D′.
(2)圖中有哪些相等的線段?有哪些平行的線段?
(3)S四邊形ABCD和S四邊形A′B′C′D′有什么關系?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:線段AB=20cm.
(1)如圖1:點P沿線段AB自A點向B點以2厘米/秒運動,點P出發(fā)2秒后,點Q沿線段BA自B點向A點以3厘米/秒運動,問再經過幾秒后P、Q相距5cm?
(2)如圖2:,點P繞著點O以60度/秒的速度逆時針旋轉一周停止,同時點Q沿直線BA自B點向A點運動,假若點P、Q兩點能相遇,求點Q運動的速度 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:
如圖①,若點B把線段分成兩條長度相等的線段AB和BC,則點B叫做線段AC的中點.
回答問題:
(1)如圖②,在數軸上,點A所表示的數是﹣2,點B所表示的數是0,點C所表示的數是3.
①若A是線段DB的中點,則點D表示的數是 ;
②若E是線段AC的中點,求點E表示的數.
(2)在數軸上,若點M表示的數是m,點N所表示的數是n,點P是線段MN的中點.
①若點P表示的數是1,則m、n可能的值是 (填寫符合要求的序號);
(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2
②直接用含m、n的代數式表示點P表示的數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于實數a,我們規(guī)定:用符號[]表示不大于的最大整數,稱[]為a的根整數,例如:[]=3,[]=3.
(1)仿照以上方法計算:[] = ;[] = .
(2)若[]=1,寫出滿足題意的x的整數值 .
如果我們對a連續(xù)求根整數,直到結果為1為止.例如:對10連續(xù)求根整數2次 []=3→[]=1,這時候結果為1.
(3)對100連續(xù)求根整數, 次之后結果為1.
(4)只需進行3次連續(xù)求根整數運算后結果為1的所有正整數中,最大的是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了打造區(qū)域中心城市,實現攀枝花跨越式發(fā)展,我市花城新區(qū)建設正按投資計劃有序推進.花城新區(qū)建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3 , 現決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如下表所示:
租金(單位:元/臺時) | 挖掘土石方量(單位:m3/臺時) | |
甲型挖掘機 | 100 | 60 |
乙型挖掘機 | 120 | 80 |
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小紅晚上在一條筆直的小路上由A處徑直走到B處,小路的正中間有一盞路燈,那么小紅在燈光照射下的影長l與她行走的路程s之間的變化關系用圖象刻畫出來大致是( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com