【題目】某數(shù)學“綜合與實踐”小組的同學把“測量斜拉索頂端到橋面的距離”作為一項課題活動,他們制訂了測量方案,并利用課余時間借助該橋斜拉索完成了實地測量.測量結果如下:如圖,兩側最長斜拉索,相交于點,分別與橋面交于,兩點,且點,,在同一豎直平面內(nèi).測得,米,請幫助該小組根據(jù)測量數(shù)據(jù),求斜拉索頂端點的距離.(參考數(shù)據(jù):,,,.)

【答案】斜拉索頂端點的距離為72

【解析】

過點于點,設米.在中,利用已知三角函數(shù)表示出AD,在中,利用已知三角函數(shù)表示出BD,根據(jù),可求得x,即為斜拉索頂端點的距離.

如圖,過點于點,設米.

中,,

中,,,

解得

斜拉索頂端點的距離為72米.

故答案為:斜拉索頂端點的距離為72

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線的對稱軸為直線,圖象過點,部分圖象如圖所示,下列判斷:①;②;③;④若點,均在拋物線上,則,其中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線.

(1)求拋物線的對稱軸(用含的式子去表示)

(2)若點,,都在拋物線上,則、的大小關系為_______;

(3)直線軸交于點,與軸交于點,過點作垂直于軸的直線與拋物線有兩個交點,在拋物線對稱軸右側的點記為,當為鈍角三角形時,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC,∠B=90°,∠C=30°,O為AC上一點,OA=2,以O為圓心,以OA為半徑的圓與CB相切于點E,與AB相交于點F,連接OE、OF,則圖中陰影部分的面積是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,拋物線軸交于點兩點,與軸交于點,直線經(jīng)過點,與拋物線另一個交點為,點是拋物線上的一個動點,過點作軸于點,交直線于點

1)求拋物線的解析式

2)當點在直線上方,且是以為腰的等腰三角形時,求的坐標

3)如圖2所示,若點為對稱軸右側拋物線上一點,連接,以為直角頂點,線段為較長直角邊,構造兩直角邊比為,是否存在點,使點恰好落在直線上?若存在,請直接寫出相應點的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠有20名工人,每人每天加工甲種零件5個或乙種零件4個.在這20名工人當中,派x人加工甲種零件,其余的加工乙種零件,已知每加工一個甲種零件可獲利16元,每加工一個乙種零件可以獲利24元.

(1)寫出此工廠每天所獲利潤y(元)與x(人)之間的函數(shù)關系式(只寫出解析式)

(2)若要使工廠每天獲利不低于1800元,問至少要派多少人加工乙種零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON45°,一直角三角尺ABC的兩個頂點C、A分別在OMON上移動,若AC6,則點OAC距離的最大值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018917日世界人工智能大會在.上海召開,人工智能的變革力在教育、制造等領域加速落地.在某市舉辦的一次中學生機器人足球賽中,有四個代表隊進入決賽,決賽中,每個隊分別與其它三個隊進行主客場比賽各一場(即每個隊要進行6場比賽),以下是積分表的一-部分.

(說明:積分=勝場積分十平場積分+負場積分)

1D代表隊的凈勝球數(shù)m=______

2)本次決賽中,勝一場積______分,平一場積______分,負一場積_______分;

3)此次競賽的獎金分配方案為:進入決賽的每支代表隊都可以獲得參賽獎金6000元;另外,在決賽期間,每勝一場可以再獲得獎金2000元,每平一場再獲得獎金1000元.請根據(jù)表格提供的信息,求出冠軍A隊一共能獲得多少獎金.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出

(1)如圖①,在矩形ABCD中,AB=2AD,ECD的中點,則∠AEB   ACB(填“>”“<”“=”);

問題探究

(2)如圖②,在正方形ABCD中,PCD邊上的一個動點,當點P位于何處時,∠APB最大?并說明理由;

問題解決

(3)如圖③,在一幢大樓AD上裝有一塊矩形廣告牌,其側面上、下邊沿相距6米(即AB=6米),下邊沿到地面的距離BD=11.6米.如果小剛的睛睛距離地面的高度EF1.6米,他從遠處正對廣告牌走近時,在P處看廣告效果最好(視角最大),請你在圖③中找到點P的位置,并計算此時小剛與大樓AD之間的距離.

查看答案和解析>>

同步練習冊答案