【題目】已知正方形ABCD的對角線ACBD交于點O,點E、F分別是線段OBOC上的動點

1)如果動點E、F滿足BEOF(如圖),且AEBF時,問點E在什么位置?并證明你的結論;

2)如果動點EF滿足BECF(如圖),寫出所有以點EF為頂點的全等三角形(不得添加輔助線).

【答案】1)當AEBF時,點EBO中點,見解析;(2)以點EF為頂點的全等三角形有△ABE≌△BCF,△AOE≌△BOF,△ADE≌△BAF.

【解析】

1)根據(jù)正方形性質(zhì)及已知條件得出△BEM∽△AEO,△BEM∽△BOF,再根據(jù)三角形相似的性質(zhì)即可得出答案;

2)根據(jù)正方形性質(zhì)及BECF即可得出全等的三角形.

解:(1)當時,點中點.證明如下:

延長于點,如圖所示:

,

,

,

,

,

,

,

,

,

,

故當時,點中點;

2四邊形是正方形,

,,,

,

,

,

,,

在△ABE和△BCF中,

同理可得,;

以點為頂點的全等三角形有,,;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形 ABCD 為正方形,取 AB 中點O ,以 AB 為直徑, O 圓心作圓.

1)如圖 1,取CD 的中點 P ,連接 BP 交⊙ O Q ,連接 DQ 并延長交 AB 的延長線于 E ,求證: QE BE AE ;

2)如圖 2,連接 CO 并延長交⊙ O M 點,求tanM 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小芳身高1.6米,此時太陽光線與地面的夾角為45°

1)若小芳正站在水平地面A處上時,那么她的影長為多少米?

2)若小芳來到一個坡度i=的坡面底端B處,當她在坡面上至少前進多少米時,小芳的影子恰好都落在坡面上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校對交通法則的了解情況在全校隨機調(diào)查了部分學生,調(diào)查結果分為四種:.非常了解,.比較了解,.基本了解,.不太了解,并將此次調(diào)查結果整理繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

1)本次共調(diào)查_______名學生;扇形統(tǒng)計圖中所對應扇形的圓心角度數(shù)是_______;

2)補全條形統(tǒng)計圖;

3)學校準備從甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學生同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線軸交于點

(1)試確定該拋物線的函數(shù)表達式;

(2)已知點是該拋物線的頂點,求的面積;

(3)若點是線段上的一動點,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的三邊長為,,有以下三個結論:(1)以,為邊長的三角形一定存在;(2)以,,為邊長的三角形一定存在;(3)以,,為邊長的三角形一定存在.其中正確結論的個數(shù)是( ).

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,把點沿對折,使點落在上的點,已知,

1)求點的坐標;

2)如果一條不與拋物線對稱軸平行的直線與該拋物線僅有一個交點,我們把這條直線稱為拋物線的切線,已知拋物線經(jīng)過點,且直線是該拋物線的切線,求拋物線的解析式;

3)已知直線與(2)中的拋物線交于,兩點,點的坐標為.求證:為定值.(參考公式:在平面直角坐標系中,已知點,,則兩點之間的距離為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500m,先到終點

的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時間t(s)之間的關系

如圖所示,給出以下結論:a=8;b=92;c=123.其中正確的是【 】

A.①②③ B.僅有①② C.僅有①③ D.僅有②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明為了測量大樓AB的高度,他從點C出發(fā),沿著斜坡面CD52米到點D處,測得大樓頂部點A的仰角為37°,大樓底部點B的俯角為45°,已知斜坡CD的坡度為i12.4.大樓AB的高度約為(  )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75

A. 32B. 35C. 36D. 40

查看答案和解析>>

同步練習冊答案