【題目】某公司生產(chǎn)某環(huán)保產(chǎn)品的成本為每件40元,經(jīng)過市場調(diào)研發(fā)現(xiàn):這件產(chǎn)品在未來兩個月的日銷量與時間的關(guān)系如圖所示未來兩個月該商品每天的價格與時間的函數(shù)關(guān)系式為:

根據(jù)以上信息,解決以下問題:

請分別確定時該產(chǎn)品的日銷量與時間之間的函數(shù)關(guān)系式;

請預測未來第一月日銷量利潤的最小值是多少?第二個月日銷量利潤的最大值是多少?

為創(chuàng)建“兩型社會”,政府決定大力扶持該環(huán)保產(chǎn)品的生產(chǎn)和銷售,從第二個月開始每銷售一件該產(chǎn)品就補貼a有了政府補貼以后,第二個月內(nèi)該產(chǎn)品日銷售利潤隨時間的增大而增大,求a的取值范圍.

【答案】;時,的最大值為元;(3)時,Wt的增大而增大.

【解析】

利用待定系數(shù)法即可解決問題;

分別構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題;

構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題;

解:時,設(shè),則有,

解得,

,

時,設(shè),則有 ,

解得,

由題意,

時,有最小值,

時,的最大值為

由題意,

對稱軸

,

的取值范圍在對稱軸的左側(cè)時Wt的增大而增大,

,

,

時,Wt的增大而增大.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,ABAC,CB=CD.延長CA至點E,使AE=AC;延長CB至點F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點N.

(1)求證:AD=AF;

(2)求證:BD=EF;

(3)試判斷四邊形ABNE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

(進價、售價均保持不變,利潤=銷售收入-進貨成本)

(1)A,B兩種型號的電風扇的銷售單價.

(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30A種型號的電風扇最多能采購多少臺?

(3)(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為打好精準脫貧攻堅戰(zhàn),精準施策,幫扶脫貧,某行政部門對其結(jié)對幫扶的村民合作社種植的三種特色農(nóng)產(chǎn)品A、B、C5月份的銷售情況進行調(diào)查統(tǒng)計,繪制成如下兩個統(tǒng)計圖(均不完整).請你結(jié)合圖中的信息,解答下列問題:

(1)該村民合作社5月份共銷售這三種特色農(nóng)產(chǎn)品多少噸?

(2)該村民合作社計劃6月份銷售A、B、C三種特色農(nóng)產(chǎn)品共500噸,根據(jù)該村民合作社5月份的銷售情況,問該村民合作社應準備C品種特色農(nóng)產(chǎn)品多少噸比較合理?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)與一次函數(shù),令.

(1)若的函數(shù)圖象相交于軸上的同一點.

①求的值;

②當為何值時,的值最小,試求出該最小值.

(2)當時,的增大而減小,請寫出的大小關(guān)系并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=54°∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,則∠OEC   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在三角形紙片ABC中,,,將該紙片沿過點B的直線折疊,使點A落在斜邊BC上的一點E處,折痕記為如圖,剪去后得到雙層如圖,再沿著過某頂點的直線將雙層三角形剪開,使得展開后的平面圖形中有一個是平行四邊形,則所得平行四邊形的周長為______cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)請判斷BD、CE有何大小、位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課本目標與評定中有這樣一道思考題:如圖鋼架中∠A=20°,焊上等邊的鋼條P1P2,P2P3,P3P4,P4P5來加固鋼架,若P1A=P1P2,問這樣的鋼條至多需要多少根?

1)請將下列解答過程補充完整:

答案:∵∠A=20°,P1A=P1P2,∴∠P1P2A=   .

P1P2=P2P3=P3P4=P4P5,∴∠P2P1P3=P2P3P1=40°,

同理可得,∠P3P2P4=P3P4P2=60°,∠P4P3P5=P4P5P3=   ,

∴∠BP4P5=CP5P4=100°90°

∴對于射線P4B上任意一點P6(點P4除外),P4P5P5P6,

∴這樣的鋼架至多需要   .

2)繼續(xù)探究:當∠A=15°時,這樣的鋼條至多需要多少根?

3)當這樣的鋼條至多需要8根時,探究∠A的取值范圍.

查看答案和解析>>

同步練習冊答案