【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長(zhǎng)CA至點(diǎn)E,使AE=AC;延長(zhǎng)CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長(zhǎng)DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說(shuō)明理由.
【答案】(1) (2)證明見(jiàn)解析;(3)四邊形ABNE是正方形.理由見(jiàn)解析.
【解析】
(1)由等腰直角三角形的性質(zhì)得出∠ABC=∠ACB=45°,求出∠ABF=135°,∠ABF=∠ACD,證出BF=CD,由SAS證明△ABF≌△ACD,即可得出AD=AF;
(2)由(1)知AF=AD,△ABF≌△ACD,得出∠FAB=∠DAC,證出∠EAF=∠BAD,由SAS證明△AEF≌△ABD,得出對(duì)應(yīng)邊相等即可;
(3)由全等三角形的性質(zhì)得出得出∠AEF=∠ABD=90°,證出四邊形ABNE是矩形,由AE=AB,即可得出四邊形ABNE是正方形.
(1)證明:∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∴∠ABF=135°.
∵∠BCD=90°,
∴∠ACD=135°.
∴∠ABF=∠ACD.
∵CB=CD,CB=BF,
∴BF=CD.
在△ABF和△ACD中,
∴△ABF≌△ACD,
∴AD=AF;
(2)證明:由(1)知AF=AD,△ABF≌△ACD,
∴∠FAB=∠DAC.
∵∠BAC=90°,
∴∠EAB=∠BAC=90°,
∴∠EAF=∠BAD.
∵AB=AC,AC=AE,
∴AB=AE.
在△AEF和△ABD中,
∴△AEF≌△ABD.
∴BD=EF.
(3)解:四邊形ABNE是正方形.理由:
∵CD=CB,∠BCD=90°,
∴∠CBD=45°.
∵∠ABC=45°,
∴∠ABD=90°.
∴∠ABN=90°.
由(2)知∠EAB=90°,△AEF≌△ABD,
∴∠AEF=∠ABD=90°.
∴四邊形ABNE是矩形.
又∵AE=AB,
∴矩形ABNE是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校的某社團(tuán)組織了一次智力競(jìng)賽,共a、b、c三題,每題或者得滿(mǎn)分或者得0分,其中題a滿(mǎn)分10分,題b、題c滿(mǎn)分均為15分.競(jìng)賽結(jié)果,每個(gè)學(xué)生至少答對(duì)了一題,三題全答對(duì)的有2人,答對(duì)其中兩道題的有14人,答對(duì)題a的人數(shù)與答對(duì)題b的人數(shù)之和為29,答對(duì)題a的人數(shù)與答對(duì)題c的人數(shù)之和為27,答對(duì)題b的人數(shù)與答對(duì)題c的人數(shù)之和為20,則這個(gè)社團(tuán)的平均成績(jī)是_____分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某園林部門(mén)決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A. B兩種園藝造型共50個(gè),擺放在迎賓大道兩側(cè)。已知搭配一個(gè)A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個(gè)B種造型需甲種花卉5盆,乙種花卉9盆。
(1)某校九年級(jí)某班課外活動(dòng)小組承接了這個(gè)園藝造型搭配方案的設(shè)計(jì),問(wèn)符合題意的搭配方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來(lái);
(2)若搭配一個(gè)A種造型的成本是200元,搭配一個(gè)B種造型的成本是360元,試說(shuō)明(1)中哪種方案成本最低,最低成本是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)定義:直角三角形兩直角邊的平方和等于斜邊的平方。如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫(xiě)出BC2=___.
(2)應(yīng)用:已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)P為AD邊上的一點(diǎn),AP=AD,請(qǐng)利用“兩點(diǎn)之間線段最短”這一原理,在線段AC上畫(huà)出一點(diǎn)M,使MP+MD最小,并直接寫(xiě)出最小值的平方為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出以下四個(gè)結(jié)論:
①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF=S△ABC;④EF=AP.上述結(jié)論始終正確的有( )
②③
A.①②③④B.①②③C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器超市銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為190元、170元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷(xiāo)售情況:
銷(xiāo)售時(shí)段 | 銷(xiāo)售數(shù)量 | 銷(xiāo)售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 1770元 |
第二周 | 4臺(tái) | 10臺(tái) | 3060 元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入一進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);
(2)若超市準(zhǔn)備用不多于5300元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,超市銷(xiāo)售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo),若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市救災(zāi)物資儲(chǔ)備倉(cāng)庫(kù)共存儲(chǔ)了A,B,C三類(lèi)救災(zāi)物資,下面的統(tǒng)計(jì)圖是三類(lèi)物資存儲(chǔ)量的不完整統(tǒng)計(jì)圖.
(1)求A類(lèi)物資的存儲(chǔ)量,并將兩個(gè)統(tǒng)計(jì)表補(bǔ)充完整;
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車(chē)共8輛,一次性將A、B兩類(lèi)物資全部運(yùn)往某災(zāi)區(qū).已知甲種貨車(chē)最多可裝A類(lèi)物資10噸和B類(lèi)物資40噸,乙種貨車(chē)最多可裝A、B類(lèi)物資各20噸,則物資儲(chǔ)備倉(cāng)庫(kù)安排甲、乙兩種貨車(chē)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊三角形ABC中,P為BC上一點(diǎn),D為AC上一點(diǎn),且∠APD=60°,BP=1,CD=,則△ABC的邊長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)某環(huán)保產(chǎn)品的成本為每件40元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn):這件產(chǎn)品在未來(lái)兩個(gè)月天的日銷(xiāo)量件與時(shí)間天的關(guān)系如圖所示未來(lái)兩個(gè)月天該商品每天的價(jià)格元件與時(shí)間天的函數(shù)關(guān)系式為:
根據(jù)以上信息,解決以下問(wèn)題:
請(qǐng)分別確定和時(shí)該產(chǎn)品的日銷(xiāo)量件與時(shí)間天之間的函數(shù)關(guān)系式;
請(qǐng)預(yù)測(cè)未來(lái)第一月日銷(xiāo)量利潤(rùn)元的最小值是多少?第二個(gè)月日銷(xiāo)量利潤(rùn)元的最大值是多少?
為創(chuàng)建“兩型社會(huì)”,政府決定大力扶持該環(huán)保產(chǎn)品的生產(chǎn)和銷(xiāo)售,從第二個(gè)月開(kāi)始每銷(xiāo)售一件該產(chǎn)品就補(bǔ)貼a元有了政府補(bǔ)貼以后,第二個(gè)月內(nèi)該產(chǎn)品日銷(xiāo)售利潤(rùn)元隨時(shí)間天的增大而增大,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com