【題目】請根據(jù)圖中提供的信息,回答下列問題:
(1)一個水瓶與一個水杯分別是多少元?
(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和20個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)
【答案】(1)一個水瓶40元,一個水杯是8元;(2)選擇乙商場購買更合算.
【解析】
(1)設(shè)一個水瓶x元,表示出一個水杯為(48﹣x)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;
(2)計算出兩商場得費用,比較即可得到結(jié)果.
(1)設(shè)一個水瓶x元,表示出一個水杯為(48﹣x)元,
根據(jù)題意得:3x+4(48﹣x)=152,
解得:x=40,
則一個水瓶40元,一個水杯是8元;
(2)甲商場所需費用為(40×5+8×20)×80%=288(元);
乙商場所需費用為5×40+(20﹣5×2)×8=280(元),
∵288>280,
∴選擇乙商場購買更合算.
科目:初中數(shù)學 來源: 題型:
【題目】如果一個正整數(shù)能表示為兩個連續(xù)偶數(shù)的平方差,那么稱這個正整數(shù)為“神秘數(shù)”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘數(shù)”.
(1)試分析28是否為“神秘數(shù)”;
(2)下面是兩個同學演算后的發(fā)現(xiàn),請選擇一個“發(fā)現(xiàn)”,判斷真、假,并說明理由.
①小能發(fā)現(xiàn):兩個連續(xù)偶數(shù)2k+2和2k(其中k取非負整數(shù))構(gòu)造的“神秘數(shù)”也是4的倍數(shù).
②小仁發(fā)現(xiàn):2016是“神秘數(shù)”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 P 是∠AOB 內(nèi)部一定點
(1)若∠AOB=50°,作點 P 關(guān)于 OA 的對稱點 P1,作點 P 關(guān)于 OB 的對稱點 P2,連 OP1、OP2,則∠P1OP2=___.
(2)若∠AOB=α,點 C、D 分別在射線 OA、OB 上移動,當△PCD 的周長最小時,則∠CPD=___(用 α 的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:某“綜合與實踐”小組開展了“正方體紙盒的制作”實踐活動,他們利用長為,寬為長方形紙板制作出兩種不同方案的正方體盒子, 請你動手操作驗證并完成任務(wù).(紙板厚度及接縫處忽略不計)
動手操作一:
如圖1,若,按如圖1所示的方式先在紙板四角剪去四個同樣大小邊長為的小正方形,再沿虛線折合起來就可以做成一個無蓋的正方體紙盒.
問題解決:(1)此時,你發(fā)現(xiàn)與之間存在的數(shù)量關(guān)系為 .
動手操作二:
如圖2,若,現(xiàn)在在紙板的四角剪去兩個小正方形和兩個小長方形恰好可以制作成一個有蓋的正方體紙盒,其大小與(1)中無蓋正方體大小一樣.
拓展延伸:(2)請你在圖2中畫出你剪去的兩個小正方形和兩個小長方形(用陰影表示),折痕用虛線表示;
(3)此時,你發(fā)現(xiàn)與之間存在的數(shù)量關(guān)系為 ;若,求有蓋正方體紙盒的表面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,A(5,0),B(0,5).
(1)如圖 1,P 是 AB 上一點且,求 P 點坐標;
(2)如圖 2,D 為 OA 上一點,AC∥OB 且∠CBO=∠DCB,求∠CBD 的度數(shù);
(3)如圖 3,E 為 OA 上一點,OF⊥BE 于 F,若∠BEO=45°+∠EOF,求的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明
(1)如圖,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG∥CD(已知)
∴∠2=
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC∥
∴∠B+ =180°
又∵∠B=50°
∴∠BDE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列是某初一數(shù)學興趣小組探究三角形內(nèi)角和的過程,請根據(jù)他們的探究過程,結(jié)合所學知識,解答下列問題.興趣小組將圖1△ABC三個內(nèi)角剪拼成圖2,由此得△ABC三個內(nèi)角的和為180度.
(1)請利用圖3證明上述結(jié)論.
(2)三角形的一條邊與另一條邊的反向延長線組成的角,叫做三角形的外角.
如圖4,點D為BC延長線上一點,則∠ACD為△ABC的一個外角.
①請?zhí)骄砍?/span>∠ACD與∠A、∠B的關(guān)系,并直接填空:∠ACD=______.
②如圖5是一個五角星,請利用上述結(jié)論求∠A+∠B+∠C+∠D+∠E的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足為D,∠ABC的平分線交AD于點E,則AE的長為
A. B. 2 C. D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com